included methods in the base class to reduce redundancy between ImuFactor and CombinedImuFactor
parent
c4b62929bf
commit
218af7c889
|
@ -76,18 +76,8 @@ void CombinedImuFactor::CombinedPreintegratedMeasurements::integrateMeasurement(
|
|||
// NOTE: order is important here because each update uses old values, e.g., velocity and position updates are based on previous rotation estimate.
|
||||
// (i.e., we have to update jacobians and covariances before updating preintegrated measurements).
|
||||
|
||||
// First we compensate the measurements for the bias: since we have only an estimate of the bias, the covariance includes the corresponding uncertainty
|
||||
Vector3 correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
|
||||
Vector3 correctedOmega = biasHat_.correctGyroscope(measuredOmega);
|
||||
|
||||
// Then compensate for sensor-body displacement: we express the quantities (originally in the IMU frame) into the body frame
|
||||
if(body_P_sensor){
|
||||
Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
|
||||
correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
|
||||
Matrix3 body_omega_body__cross = skewSymmetric(correctedOmega);
|
||||
correctedAcc = body_R_sensor * correctedAcc - body_omega_body__cross * body_omega_body__cross * body_P_sensor->translation().vector();
|
||||
// linear acceleration vector in the body frame
|
||||
}
|
||||
Vector3 correctedAcc, correctedOmega;
|
||||
correctMeasurementsByBiasAndSensorPose(measuredAcc, measuredOmega, correctedAcc, correctedOmega, body_P_sensor);
|
||||
|
||||
const Vector3 theta_incr = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
|
||||
const Rot3 Rincr = Rot3::Expmap(theta_incr); // rotation increment computed from the current rotation rate measurement
|
||||
|
@ -95,17 +85,7 @@ void CombinedImuFactor::CombinedPreintegratedMeasurements::integrateMeasurement(
|
|||
|
||||
// Update Jacobians
|
||||
/* ----------------------------------------------------------------------------------------------------------------------- */
|
||||
if(!use2ndOrderIntegration_){
|
||||
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT;
|
||||
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT;
|
||||
}else{
|
||||
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT - 0.5 * deltaRij_.matrix() * deltaT*deltaT;
|
||||
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT - 0.5 * deltaRij_.matrix()
|
||||
* skewSymmetric(correctedAcc) * deltaT*deltaT * delRdelBiasOmega_;
|
||||
}
|
||||
delVdelBiasAcc_ += -deltaRij_.matrix() * deltaT;
|
||||
delVdelBiasOmega_ += -deltaRij_.matrix() * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega_;
|
||||
delRdelBiasOmega_ = Rincr.inverse().matrix() * delRdelBiasOmega_ - Jr_theta_incr * deltaT;
|
||||
updatePreintegratedJacobians(correctedAcc, Jr_theta_incr, Rincr, deltaT);
|
||||
|
||||
// Update preintegrated measurements covariance: as in [2] we consider a first order propagation that
|
||||
// can be seen as a prediction phase in an EKF framework. In this implementation, contrarily to [2] we
|
||||
|
@ -173,14 +153,7 @@ void CombinedImuFactor::CombinedPreintegratedMeasurements::integrateMeasurement(
|
|||
|
||||
// Update preintegrated measurements
|
||||
/* ----------------------------------------------------------------------------------------------------------------------- */
|
||||
if(!use2ndOrderIntegration_){
|
||||
deltaPij_ += deltaVij_ * deltaT;
|
||||
}else{
|
||||
deltaPij_ += deltaVij_ * deltaT + 0.5 * deltaRij_.matrix() * correctedAcc * deltaT*deltaT;
|
||||
}
|
||||
deltaVij_ += deltaRij_.matrix() * correctedAcc * deltaT;
|
||||
deltaRij_ = deltaRij_ * Rincr;
|
||||
deltaTij_ += deltaT;
|
||||
updatePreintegratedMeasurements(correctedAcc, Rincr, deltaT);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
|
|
@ -72,18 +72,8 @@ void ImuFactor::PreintegratedMeasurements::integrateMeasurement(
|
|||
// NOTE: order is important here because each update uses old values (i.e., we have to update
|
||||
// jacobians and covariances before updating preintegrated measurements).
|
||||
|
||||
// First we compensate the measurements for the bias
|
||||
Vector3 correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
|
||||
Vector3 correctedOmega = biasHat_.correctGyroscope(measuredOmega);
|
||||
|
||||
// Then compensate for sensor-body displacement: we express the quantities (originally in the IMU frame) into the body frame
|
||||
if(body_P_sensor){
|
||||
Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
|
||||
correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
|
||||
Matrix3 body_omega_body__cross = skewSymmetric(correctedOmega);
|
||||
correctedAcc = body_R_sensor * correctedAcc - body_omega_body__cross * body_omega_body__cross * body_P_sensor->translation().vector();
|
||||
// linear acceleration vector in the body frame
|
||||
}
|
||||
Vector3 correctedAcc, correctedOmega;
|
||||
correctMeasurementsByBiasAndSensorPose(measuredAcc, measuredOmega, correctedAcc, correctedOmega, body_P_sensor);
|
||||
|
||||
const Vector3 theta_incr = correctedOmega * deltaT; // rotation vector describing rotation increment computed from the current rotation rate measurement
|
||||
const Rot3 Rincr = Rot3::Expmap(theta_incr); // rotation increment computed from the current rotation rate measurement
|
||||
|
@ -91,17 +81,7 @@ void ImuFactor::PreintegratedMeasurements::integrateMeasurement(
|
|||
|
||||
// Update Jacobians
|
||||
/* ----------------------------------------------------------------------------------------------------------------------- */
|
||||
if(!use2ndOrderIntegration_){
|
||||
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT;
|
||||
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT;
|
||||
}else{
|
||||
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT - 0.5 * deltaRij_.matrix() * deltaT*deltaT;
|
||||
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT - 0.5 * deltaRij_.matrix()
|
||||
* skewSymmetric(correctedAcc) * deltaT*deltaT * delRdelBiasOmega_;
|
||||
}
|
||||
delVdelBiasAcc_ += -deltaRij_.matrix() * deltaT;
|
||||
delVdelBiasOmega_ += -deltaRij_.matrix() * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega_;
|
||||
delRdelBiasOmega_ = Rincr.inverse().matrix() * delRdelBiasOmega_ - Jr_theta_incr * deltaT;
|
||||
updatePreintegratedJacobians(correctedAcc, Jr_theta_incr, Rincr, deltaT);
|
||||
|
||||
// Update preintegrated measurements covariance
|
||||
// as in [2] we consider a first order propagation that can be seen as a prediction phase in an EKF framework
|
||||
|
@ -153,14 +133,7 @@ void ImuFactor::PreintegratedMeasurements::integrateMeasurement(
|
|||
|
||||
// Update preintegrated measurements (this has to be done after the update of covariances and jacobians!)
|
||||
/* ----------------------------------------------------------------------------------------------------------------------- */
|
||||
if(!use2ndOrderIntegration_){
|
||||
deltaPij_ += deltaVij_ * deltaT;
|
||||
}else{
|
||||
deltaPij_ += deltaVij_ * deltaT + 0.5 * deltaRij_.matrix() * correctedAcc * deltaT*deltaT;
|
||||
}
|
||||
deltaVij_ += deltaRij_.matrix() * correctedAcc * deltaT;
|
||||
deltaRij_ = deltaRij_ * Rincr;
|
||||
deltaTij_ += deltaT;
|
||||
updatePreintegratedMeasurements(correctedAcc, Rincr, deltaT);
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
|
|
|
@ -105,6 +105,48 @@ public:
|
|||
delRdelBiasOmega_ = Z_3x3;
|
||||
}
|
||||
|
||||
/// Update preintegrated measurements
|
||||
void updatePreintegratedMeasurements(const Vector3& correctedAcc, const Rot3& Rincr, double deltaT){
|
||||
if(!use2ndOrderIntegration_){
|
||||
deltaPij_ += deltaVij_ * deltaT;
|
||||
}else{
|
||||
deltaPij_ += deltaVij_ * deltaT + 0.5 * deltaRij_.matrix() * correctedAcc * deltaT*deltaT;
|
||||
}
|
||||
deltaVij_ += deltaRij_.matrix() * correctedAcc * deltaT;
|
||||
deltaRij_ = deltaRij_ * Rincr;
|
||||
deltaTij_ += deltaT;
|
||||
}
|
||||
|
||||
/// Update Jacobians to be used during preintegration
|
||||
void updatePreintegratedJacobians(const Vector3& correctedAcc, const Matrix3& Jr_theta_incr, const Rot3& Rincr, double deltaT){
|
||||
if(!use2ndOrderIntegration_){
|
||||
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT;
|
||||
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT;
|
||||
}else{
|
||||
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT - 0.5 * deltaRij_.matrix() * deltaT*deltaT;
|
||||
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT - 0.5 * deltaRij_.matrix()
|
||||
* skewSymmetric(correctedAcc) * deltaT*deltaT * delRdelBiasOmega_;
|
||||
}
|
||||
delVdelBiasAcc_ += -deltaRij_.matrix() * deltaT;
|
||||
delVdelBiasOmega_ += -deltaRij_.matrix() * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega_;
|
||||
delRdelBiasOmega_ = Rincr.inverse().matrix() * delRdelBiasOmega_ - Jr_theta_incr * deltaT;
|
||||
}
|
||||
|
||||
void correctMeasurementsByBiasAndSensorPose(const Vector3& measuredAcc, const Vector3& measuredOmega,
|
||||
Vector3& correctedAcc, Vector3& correctedOmega, boost::optional<const Pose3&> body_P_sensor){
|
||||
correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
|
||||
correctedOmega = biasHat_.correctGyroscope(measuredOmega);
|
||||
|
||||
// Then compensate for sensor-body displacement: we express the quantities (originally in the IMU frame) into the body frame
|
||||
if(body_P_sensor){
|
||||
Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
|
||||
correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
|
||||
Matrix3 body_omega_body__cross = skewSymmetric(correctedOmega);
|
||||
correctedAcc = body_R_sensor * correctedAcc - body_omega_body__cross * body_omega_body__cross * body_P_sensor->translation().vector();
|
||||
// linear acceleration vector in the body frame
|
||||
}
|
||||
}
|
||||
|
||||
/// methods to access class variables
|
||||
Matrix deltaRij() const {return deltaRij_.matrix();}
|
||||
double deltaTij() const{return deltaTij_;}
|
||||
|
|
Loading…
Reference in New Issue