Fixed a large number of issues in test with switch to PinholePose

release/4.3a0
dellaert 2015-03-04 10:21:58 -08:00
parent f3c8b1ac9a
commit 216b5ae62b
1 changed files with 60 additions and 68 deletions

View File

@ -160,7 +160,7 @@ TEST( SmartProjectionPoseFactor, noisy ) {
Point2 level_uv_right = level_camera_right.project(landmark1);
Values values;
values.insert(x1, cam2);
values.insert(x1, cam1);
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 10, 0., -M_PI / 10),
Point3(0.5, 0.1, 0.3));
values.insert(x2, Camera(pose_right.compose(noise_pose), sharedK));
@ -228,7 +228,7 @@ TEST( SmartProjectionPoseFactor, 3poses_smart_projection_factor ) {
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam2);
values.insert(x1, cam1);
values.insert(x2, cam2);
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, Camera(pose_above * noise_pose, sharedK2));
@ -242,7 +242,7 @@ TEST( SmartProjectionPoseFactor, 3poses_smart_projection_factor ) {
params.verbosity = NonlinearOptimizerParams::ERROR;
Values result;
gttic_ (SmartProjectionPoseFactor);
gttic_(SmartProjectionPoseFactor);
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
gttoc_(SmartProjectionPoseFactor);
@ -438,7 +438,7 @@ TEST( SmartProjectionPoseFactor, 3poses_iterative_smart_projection_factor ) {
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam2);
values.insert(x1, cam1);
values.insert(x2, cam2);
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, Camera(pose_above * noise_pose, sharedK));
@ -452,7 +452,7 @@ TEST( SmartProjectionPoseFactor, 3poses_iterative_smart_projection_factor ) {
params.verbosity = NonlinearOptimizerParams::ERROR;
Values result;
gttic_ (SmartProjectionPoseFactor);
gttic_(SmartProjectionPoseFactor);
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
gttoc_(SmartProjectionPoseFactor);
@ -508,7 +508,7 @@ TEST( SmartProjectionPoseFactor, jacobianSVD ) {
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam2);
values.insert(x1, cam1);
values.insert(x2, cam2);
values.insert(x3, Camera(pose_above * noise_pose, sharedK));
@ -566,7 +566,7 @@ TEST( SmartProjectionPoseFactor, landmarkDistance ) {
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam2);
values.insert(x1, cam1);
values.insert(x2, cam2);
values.insert(x3, Camera(pose_above * noise_pose, sharedK));
@ -637,7 +637,7 @@ TEST( SmartProjectionPoseFactor, dynamicOutlierRejection ) {
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam2);
values.insert(x1, cam1);
values.insert(x2, cam2);
values.insert(x3, Camera(pose_above * noise_pose, sharedK));
@ -690,7 +690,7 @@ TEST( SmartProjectionPoseFactor, jacobianQ ) {
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam2);
values.insert(x1, cam1);
values.insert(x2, cam2);
values.insert(x3, Camera(pose_above * noise_pose, sharedK));
@ -738,20 +738,22 @@ TEST( SmartProjectionPoseFactor, 3poses_projection_factor ) {
ProjectionFactor(cam3.project(landmark3), model, x3, L(3), sharedK2));
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
graph.push_back(PriorFactor<Camera>(x1, cam1, noisePrior));
graph.push_back(PriorFactor<Camera>(x2, cam2, noisePrior));
graph.push_back(PriorFactor<Pose3>(x1, level_pose, noisePrior));
graph.push_back(PriorFactor<Pose3>(x2, pose_right, noisePrior));
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 10, 0., -M_PI / 10),
Point3(0.5, 0.1, 0.3));
Values values;
values.insert(x1, cam2);
values.insert(x2, cam2);
values.insert(x3, Camera(pose_above * noise_pose, sharedK2));
values.insert(x1, level_pose);
values.insert(x2, pose_right);
values.insert(x3, pose_above * noise_pose);
values.insert(L(1), landmark1);
values.insert(L(2), landmark2);
values.insert(L(3), landmark3);
if (isDebugTest)
values.at<Camera>(x3).print("Pose3 before optimization: ");
values.at<Pose3>(x3).print("Pose3 before optimization: ");
DOUBLES_EQUAL(48406055, graph.error(values), 1);
LevenbergMarquardtParams params;
if (isDebugTest)
@ -761,9 +763,11 @@ TEST( SmartProjectionPoseFactor, 3poses_projection_factor ) {
LevenbergMarquardtOptimizer optimizer(graph, values, params);
Values result = optimizer.optimize();
DOUBLES_EQUAL(0, graph.error(result), 1e-9);
if (isDebugTest)
result.at<Camera>(x3).print("Pose3 after optimization: ");
EXPECT(assert_equal(cam3, result.at<Camera>(x3), 1e-7));
result.at<Pose3>(x3).print("Pose3 after optimization: ");
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-7));
}
/* *************************************************************************/
@ -811,22 +815,19 @@ TEST( SmartProjectionPoseFactor, CheckHessian) {
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam2);
values.insert(x1, cam1);
values.insert(x2, cam2);
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, Camera(pose_above * noise_pose, sharedK));
if (isDebugTest)
values.at<Camera>(x3).print("Camera before optimization: ");
boost::shared_ptr<GaussianFactor> hessianFactor1 = smartFactor1->linearize(
values);
boost::shared_ptr<GaussianFactor> hessianFactor2 = smartFactor2->linearize(
values);
boost::shared_ptr<GaussianFactor> hessianFactor3 = smartFactor3->linearize(
values);
boost::shared_ptr<GaussianFactor> factor1 = smartFactor1->linearize(values);
boost::shared_ptr<GaussianFactor> factor2 = smartFactor2->linearize(values);
boost::shared_ptr<GaussianFactor> factor3 = smartFactor3->linearize(values);
Matrix CumulativeInformation = hessianFactor1->information()
+ hessianFactor2->information() + hessianFactor3->information();
Matrix CumulativeInformation = factor1->information() + factor2->information()
+ factor3->information();
boost::shared_ptr<GaussianFactorGraph> GaussianGraph = graph.linearize(
values);
@ -835,9 +836,8 @@ TEST( SmartProjectionPoseFactor, CheckHessian) {
// Check Hessian
EXPECT(assert_equal(GraphInformation, CumulativeInformation, 1e-8));
Matrix AugInformationMatrix = hessianFactor1->augmentedInformation()
+ hessianFactor2->augmentedInformation()
+ hessianFactor3->augmentedInformation();
Matrix AugInformationMatrix = factor1->augmentedInformation()
+ factor2->augmentedInformation() + factor3->augmentedInformation();
// Check Information vector
// cout << AugInformationMatrix.size() << endl;
@ -891,14 +891,14 @@ TEST( SmartProjectionPoseFactor, 3poses_2land_rotation_only_smart_projection_fac
graph.push_back(smartFactor2);
graph.push_back(PriorFactor<Camera>(x1, cam1, noisePrior));
graph.push_back(
PoseTranslationPrior<Pose3>(x2, positionPrior, noisePriorTranslation));
PoseTranslationPrior<Camera>(x2, positionPrior, noisePriorTranslation));
graph.push_back(
PoseTranslationPrior<Pose3>(x3, positionPrior, noisePriorTranslation));
PoseTranslationPrior<Camera>(x3, positionPrior, noisePriorTranslation));
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 10, 0., -M_PI / 10),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam2);
values.insert(x1, cam1);
values.insert(x2, Camera(pose_right * noise_pose, sharedK2));
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, Camera(pose_above * noise_pose * noise_pose, sharedK2));
@ -912,7 +912,7 @@ TEST( SmartProjectionPoseFactor, 3poses_2land_rotation_only_smart_projection_fac
params.verbosity = NonlinearOptimizerParams::ERROR;
Values result;
gttic_ (SmartProjectionPoseFactor);
gttic_(SmartProjectionPoseFactor);
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
gttoc_(SmartProjectionPoseFactor);
@ -988,7 +988,7 @@ TEST( SmartProjectionPoseFactor, 3poses_rotation_only_smart_projection_factor )
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam2);
values.insert(x1, cam1);
values.insert(x2, cam2);
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, Camera(pose_above * noise_pose, sharedK));
@ -1002,7 +1002,7 @@ TEST( SmartProjectionPoseFactor, 3poses_rotation_only_smart_projection_factor )
params.verbosity = NonlinearOptimizerParams::ERROR;
Values result;
gttic_ (SmartProjectionPoseFactor);
gttic_(SmartProjectionPoseFactor);
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
gttoc_(SmartProjectionPoseFactor);
@ -1042,17 +1042,16 @@ TEST( SmartProjectionPoseFactor, Hessian ) {
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 10, 0., -M_PI / 10),
Point3(0.5, 0.1, 0.3));
Values values;
values.insert(x1, cam2);
values.insert(x1, cam1);
values.insert(x2, cam2);
boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor1->linearize(
values);
boost::shared_ptr<GaussianFactor> factor = smartFactor1->linearize(values);
if (isDebugTest)
hessianFactor->print("Hessian factor \n");
factor->print("Hessian factor \n");
// compute triangulation from linearization point
// compute reprojection errors (sum squared)
// compare with hessianFactor.info(): the bottom right element is the squared sum of the reprojection errors (normalized by the covariance)
// compare with factor.info(): the bottom right element is the squared sum of the reprojection errors (normalized by the covariance)
// check that it is correctly scaled when using noiseProjection = [1/4 0; 0 1/4]
}
@ -1075,12 +1074,12 @@ TEST( SmartProjectionPoseFactor, HessianWithRotation ) {
smartFactorInstance->add(measurements_cam1, views, model);
Values values;
values.insert(x1, cam2);
values.insert(x1, cam1);
values.insert(x2, cam2);
values.insert(x3, cam3);
boost::shared_ptr<GaussianFactor> hessianFactor =
smartFactorInstance->linearize(values);
boost::shared_ptr<GaussianFactor> factor = smartFactorInstance->linearize(
values);
Pose3 poseDrift = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
@ -1089,13 +1088,11 @@ TEST( SmartProjectionPoseFactor, HessianWithRotation ) {
rotValues.insert(x2, Camera(poseDrift.compose(pose_right), sharedK));
rotValues.insert(x3, Camera(poseDrift.compose(pose_above), sharedK));
boost::shared_ptr<GaussianFactor> hessianFactorRot =
smartFactorInstance->linearize(rotValues);
boost::shared_ptr<GaussianFactor> factorRot = smartFactorInstance->linearize(
rotValues);
// Hessian is invariant to rotations in the nondegenerate case
EXPECT(
assert_equal(hessianFactor->information(),
hessianFactorRot->information(), 1e-7));
EXPECT(assert_equal(factor->information(), factorRot->information(), 1e-7));
Pose3 poseDrift2 = Pose3(Rot3::ypr(-M_PI / 2, -M_PI / 3, -M_PI / 2),
Point3(10, -4, 5));
@ -1105,13 +1102,12 @@ TEST( SmartProjectionPoseFactor, HessianWithRotation ) {
tranValues.insert(x2, Camera(poseDrift2.compose(pose_right), sharedK));
tranValues.insert(x3, Camera(poseDrift2.compose(pose_above), sharedK));
boost::shared_ptr<GaussianFactor> hessianFactorRotTran =
boost::shared_ptr<GaussianFactor> factorRotTran =
smartFactorInstance->linearize(tranValues);
// Hessian is invariant to rotations and translations in the nondegenerate case
EXPECT(
assert_equal(hessianFactor->information(),
hessianFactorRotTran->information(), 1e-7));
assert_equal(factor->information(), factorRotTran->information(), 1e-7));
}
/* *************************************************************************/
@ -1133,14 +1129,13 @@ TEST( SmartProjectionPoseFactor, HessianWithRotationDegenerate ) {
smartFactor->add(measurements_cam1, views, model);
Values values;
values.insert(x1, cam2);
values.insert(x1, cam1);
values.insert(x2, cam2);
values.insert(x3, cam3);
boost::shared_ptr<GaussianFactor> hessianFactor = smartFactor->linearize(
values);
boost::shared_ptr<GaussianFactor> factor = smartFactor->linearize(values);
if (isDebugTest)
hessianFactor->print("Hessian factor \n");
factor->print("Hessian factor \n");
Pose3 poseDrift = Pose3(Rot3::ypr(-M_PI / 2, 0., -M_PI / 2), Point3(0, 0, 0));
@ -1149,15 +1144,13 @@ TEST( SmartProjectionPoseFactor, HessianWithRotationDegenerate ) {
rotValues.insert(x2, Camera(poseDrift.compose(pose_right), sharedK2));
rotValues.insert(x3, Camera(poseDrift.compose(pose_above), sharedK2));
boost::shared_ptr<GaussianFactor> hessianFactorRot = smartFactor->linearize(
boost::shared_ptr<GaussianFactor> factorRot = smartFactor->linearize(
rotValues);
if (isDebugTest)
hessianFactorRot->print("Hessian factor \n");
factorRot->print("Hessian factor \n");
// Hessian is invariant to rotations in the nondegenerate case
EXPECT(
assert_equal(hessianFactor->information(),
hessianFactorRot->information(), 1e-8));
EXPECT(assert_equal(factor->information(), factorRot->information(), 1e-8));
Pose3 poseDrift2 = Pose3(Rot3::ypr(-M_PI / 2, -M_PI / 3, -M_PI / 2),
Point3(10, -4, 5));
@ -1167,13 +1160,12 @@ TEST( SmartProjectionPoseFactor, HessianWithRotationDegenerate ) {
tranValues.insert(x2, Camera(poseDrift2.compose(pose_right), sharedK2));
tranValues.insert(x3, Camera(poseDrift2.compose(pose_above), sharedK2));
boost::shared_ptr<GaussianFactor> hessianFactorRotTran =
smartFactor->linearize(tranValues);
boost::shared_ptr<GaussianFactor> factorRotTran = smartFactor->linearize(
tranValues);
// Hessian is invariant to rotations and translations in the nondegenerate case
EXPECT(
assert_equal(hessianFactor->information(),
hessianFactorRotTran->information(), 1e-8));
assert_equal(factor->information(), factorRotTran->information(), 1e-8));
}
/* ************************************************************************* */
@ -1242,7 +1234,7 @@ TEST( SmartProjectionPoseFactor, Cal3Bundler ) {
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam2);
values.insert(x1, cam1);
values.insert(x2, cam2);
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, Camera(pose_above * noise_pose, sharedBundlerK));
@ -1256,7 +1248,7 @@ TEST( SmartProjectionPoseFactor, Cal3Bundler ) {
params.verbosity = NonlinearOptimizerParams::ERROR;
Values result;
gttic_ (SmartProjectionPoseFactor);
gttic_(SmartProjectionPoseFactor);
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
gttoc_(SmartProjectionPoseFactor);
@ -1348,7 +1340,7 @@ TEST( SmartProjectionPoseFactor, Cal3BundlerRotationOnly ) {
Pose3 noise_pose = Pose3(Rot3::ypr(-M_PI / 100, 0., -M_PI / 100),
Point3(0.1, 0.1, 0.1)); // smaller noise
Values values;
values.insert(x1, cam2);
values.insert(x1, cam1);
values.insert(x2, cam2);
// initialize third pose with some noise, we expect it to move back to original pose_above
values.insert(x3, Camera(pose_above * noise_pose, sharedBundlerK));
@ -1362,7 +1354,7 @@ TEST( SmartProjectionPoseFactor, Cal3BundlerRotationOnly ) {
params.verbosity = NonlinearOptimizerParams::ERROR;
Values result;
gttic_ (SmartProjectionPoseFactor);
gttic_(SmartProjectionPoseFactor);
LevenbergMarquardtOptimizer optimizer(graph, values, params);
result = optimizer.optimize();
gttoc_(SmartProjectionPoseFactor);