Remove obsolete factor -> replaced by RegularJacobianFactor

release/4.3a0
dellaert 2015-02-22 08:13:29 +01:00
parent fb3e5133c2
commit 2151e86bad
1 changed files with 0 additions and 103 deletions

View File

@ -1,103 +0,0 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/*
* @file JacobianSchurFactor.h
* @brief Jacobianfactor that combines and eliminates points
* @date Oct 27, 2013
* @uthor Frank Dellaert
*/
#pragma once
#include <gtsam/linear/JacobianFactor.h>
#include <boost/foreach.hpp>
namespace gtsam {
/**
* JacobianFactor for Schur complement
* Is base class for JacobianQFactor, JacobianFactorQR, and JacobianFactorSVD
* Provides raw memory access versions of linear operator.
*/
template<size_t D>
class JacobianSchurFactor: public JacobianFactor {
public:
// Use eigen magic to access raw memory
typedef Eigen::Matrix<double, D, 1> DVector;
typedef Eigen::Map<DVector> DMap;
typedef Eigen::Map<const DVector> ConstDMap;
/**
* @brief double* Matrix-vector multiply, i.e. y = A*x
* RAW memory access! Assumes keys start at 0 and go to M-1, and x is laid out that way
*/
Vector operator*(const double* x) const {
Vector Ax = zero(Ab_.rows());
if (empty())
return Ax;
// Just iterate over all A matrices and multiply in correct config part
for (size_t pos = 0; pos < size(); ++pos)
Ax += Ab_(pos) * ConstDMap(x + D * keys_[pos]);
return model_ ? model_->whiten(Ax) : Ax;
}
/**
* @brief double* Transpose Matrix-vector multiply, i.e. x += A'*e
* RAW memory access! Assumes keys start at 0 and go to M-1, and y is laid out that way
*/
void transposeMultiplyAdd(double alpha, const Vector& e, double* x) const {
Vector E = alpha * (model_ ? model_->whiten(e) : e);
// Just iterate over all A matrices and insert Ai^e into y
for (size_t pos = 0; pos < size(); ++pos)
DMap(x + D * keys_[pos]) += Ab_(pos).transpose() * E;
}
/** y += alpha * A'*A*x */
void multiplyHessianAdd(double alpha, const VectorValues& x,
VectorValues& y) const {
JacobianFactor::multiplyHessianAdd(alpha, x, y);
}
/**
* @brief double* Hessian-vector multiply, i.e. y += A'*(A*x)
* RAW memory access! Assumes keys start at 0 and go to M-1, and x and and y are laid out that way
*/
void multiplyHessianAdd(double alpha, const double* x, double* y) const {
if (empty())
return;
Vector Ax = zero(Ab_.rows());
// Just iterate over all A matrices and multiply in correct config part
for (size_t pos = 0; pos < size(); ++pos)
Ax += Ab_(pos) * ConstDMap(x + D * keys_[pos]);
// Deal with noise properly, need to Double* whiten as we are dividing by variance
if (model_) {
model_->whitenInPlace(Ax);
model_->whitenInPlace(Ax);
}
// multiply with alpha
Ax *= alpha;
// Again iterate over all A matrices and insert Ai^e into y
for (size_t pos = 0; pos < size(); ++pos)
DMap(y + D * keys_[pos]) += Ab_(pos).transpose() * Ax;
}
};
// end class JacobianSchurFactor
}// end namespace gtsam