Implemented the "hidden constant" scheme.

release/4.3a0
Frank Dellaert 2023-01-16 16:45:30 -08:00
parent 7a41180e82
commit 207c9b7236
2 changed files with 50 additions and 20 deletions

View File

@ -212,7 +212,22 @@ boost::shared_ptr<GaussianMixtureFactor> GaussianMixture::likelihood(
const KeyVector continuousParentKeys = continuousParents();
const GaussianMixtureFactor::Factors likelihoods(
conditionals_, [&](const GaussianConditional::shared_ptr &conditional) {
return conditional->likelihood(given);
const auto likelihood_m = conditional->likelihood(given);
const double Cgm_Kgcm =
logConstant_ - conditional->logNormalizationConstant();
if (Cgm_Kgcm == 0.0) {
return likelihood_m;
} else {
// Add a constant factor to the likelihood in case the noise models
// are not all equal.
GaussianFactorGraph gfg;
gfg.push_back(likelihood_m);
Vector c(1);
c << std::sqrt(2.0 * Cgm_Kgcm);
auto constantFactor = boost::make_shared<JacobianFactor>(c);
gfg.push_back(constantFactor);
return boost::make_shared<JacobianFactor>(gfg);
}
});
return boost::make_shared<GaussianMixtureFactor>(
continuousParentKeys, discreteParentKeys, likelihoods);
@ -319,8 +334,8 @@ AlgebraicDecisionTree<Key> GaussianMixture::logProbability(
AlgebraicDecisionTree<Key> GaussianMixture::error(
const VectorValues &continuousValues) const {
auto errorFunc = [&](const GaussianConditional::shared_ptr &conditional) {
return logConstant_ + conditional->error(continuousValues) -
conditional->logNormalizationConstant();
return conditional->error(continuousValues) + //
logConstant_ - conditional->logNormalizationConstant();
};
DecisionTree<Key, double> errorTree(conditionals_, errorFunc);
return errorTree;
@ -330,8 +345,8 @@ AlgebraicDecisionTree<Key> GaussianMixture::error(
double GaussianMixture::error(const HybridValues &values) const {
// Directly index to get the conditional, no need to build the whole tree.
auto conditional = conditionals_(values.discrete());
return logConstant_ + conditional->error(values.continuous()) -
conditional->logNormalizationConstant();
return conditional->error(values.continuous()) + //
logConstant_ - conditional->logNormalizationConstant();
}
/* *******************************************************************************/

View File

@ -143,7 +143,6 @@ TEST(GaussianMixture, Likelihood) {
std::vector<double> ratio(2);
for (size_t mode : {0, 1}) {
const HybridValues hv{vv, {{M(0), mode}}};
// Print error of mixture and likelihood:
ratio[mode] = std::exp(-likelihood->error(hv)) / mixture.evaluate(hv);
}
EXPECT_DOUBLES_EQUAL(ratio[0], ratio[1], 1e-8);
@ -193,28 +192,44 @@ TEST(GaussianMixture, Likelihood2) {
// Compute likelihood
auto likelihood = mixture.likelihood(vv);
GTSAM_PRINT(mixture);
GTSAM_PRINT(*likelihood);
// Check that the mixture error and the likelihood error are the same.
// Check that the mixture error and the likelihood error are as expected,
// this invariant is the same as the equal noise case:
EXPECT_DOUBLES_EQUAL(mixture.error(hv0), likelihood->error(hv0), 1e-8);
EXPECT_DOUBLES_EQUAL(mixture.error(hv1), likelihood->error(hv1), 1e-8);
// Check that likelihood error is as expected, i.e., just the errors of the
// individual likelihoods, in the `equal_constants` case.
std::vector<DiscreteKey> discrete_keys = {mode};
std::vector<double> leaves = {conditionals[0]->likelihood(vv)->error(vv),
conditionals[1]->likelihood(vv)->error(vv)};
AlgebraicDecisionTree<Key> expected(discrete_keys, leaves);
EXPECT(assert_equal(expected, likelihood->error(vv), 1e-6));
// Check the detailed JacobianFactor calculation for mode==1.
{
// We have a JacobianFactor
const auto gf1 = (*likelihood)(assignment1);
const auto jf1 = boost::dynamic_pointer_cast<JacobianFactor>(gf1);
CHECK(jf1);
// It has 2 rows, not 1!
CHECK(jf1->rows() == 2);
// Check that the constant C1 is properly encoded in the JacobianFactor.
const double C1 = mixture.logNormalizationConstant() -
conditionals[1]->logNormalizationConstant();
const double c1 = std::sqrt(2.0 * C1);
Vector expected_unwhitened(2);
expected_unwhitened << 4.9 - 5.0, -c1;
Vector actual_unwhitened = jf1->unweighted_error(vv);
EXPECT(assert_equal(expected_unwhitened, actual_unwhitened));
// Make sure the noise model does not touch it.
Vector expected_whitened(2);
expected_whitened << (4.9 - 5.0) / 3.0, -c1;
Vector actual_whitened = jf1->error_vector(vv);
EXPECT(assert_equal(expected_whitened, actual_whitened));
// Check that the error is equal to the mixture error:
EXPECT_DOUBLES_EQUAL(mixture.error(hv1), jf1->error(hv1), 1e-8);
}
// Check that the ratio of probPrime to evaluate is the same for all modes.
std::vector<double> ratio(2);
for (size_t mode : {0, 1}) {
const HybridValues hv{vv, {{M(0), mode}}};
// Print error of mixture and likelihood:
std::cout << "mode " << mode << " mixture: " << mixture.error(hv)
<< " likelihood: " << likelihood->error(hv) << std::endl;
ratio[mode] = std::exp(-likelihood->error(hv)) / mixture.evaluate(hv);
}
EXPECT_DOUBLES_EQUAL(ratio[0], ratio[1], 1e-8);