Made CG state a class
parent
43f9baf77a
commit
1f165a9f85
|
@ -15,68 +15,111 @@ using namespace std;
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
/**
|
// state for CG method
|
||||||
* conjugate gradient method.
|
|
||||||
* S: linear system, V: step vector, E: errors
|
|
||||||
*/
|
|
||||||
template<class S, class V, class E>
|
template<class S, class V, class E>
|
||||||
V conjugateGradients(const S& Ab, V x, bool verbose, double epsilon, double epsilon_abs,
|
struct CGState {
|
||||||
size_t maxIterations, bool steepest = false) {
|
|
||||||
if (maxIterations == 0) maxIterations = dim(x) * (steepest ? 10 : 1);
|
|
||||||
size_t reset = (size_t)(sqrt(dim(x))+0.5); // when to reset
|
|
||||||
|
|
||||||
// Start with g0 = A'*(A*x0-b), d0 = - g0
|
bool steepest, verbose;
|
||||||
// i.e., first step is in direction of negative gradient
|
double gamma, threshold;
|
||||||
V g = Ab.gradient(x);
|
size_t k, maxIterations, reset;
|
||||||
V d = g; // instead of negating gradient, alpha will be negated
|
V g, d;
|
||||||
double gamma0 = dot(g, g), gamma_old = gamma0;
|
E Ad;
|
||||||
if (gamma0 < epsilon_abs) return x;
|
|
||||||
double threshold = epsilon * epsilon * gamma0;
|
|
||||||
|
|
||||||
if (verbose) cout << "CG: epsilon = " << epsilon << ", maxIterations = "
|
/** constructor */
|
||||||
<< maxIterations << ", ||g0||^2 = " << gamma0 << ", threshold = "
|
CGState(const S& Ab, const V& x, bool verb, double epsilon,
|
||||||
<< threshold << endl;
|
double epsilon_abs, size_t maxIt, bool steep) {
|
||||||
|
k = 0;
|
||||||
|
verbose = verb;
|
||||||
|
steepest = steep;
|
||||||
|
maxIterations == maxIt ? maxIt : dim(x) * (steepest ? 10 : 1);
|
||||||
|
reset = (size_t) (sqrt(dim(x)) + 0.5); // when to reset
|
||||||
|
|
||||||
// Allocate and calculate A*d for first iteration
|
// Start with g0 = A'*(A*x0-b), d0 = - g0
|
||||||
E Ad = Ab * d;
|
// i.e., first step is in direction of negative gradient
|
||||||
|
g = Ab.gradient(x);
|
||||||
|
d = g; // instead of negating gradient, alpha will be negated
|
||||||
|
|
||||||
// loop maxIterations times
|
// init gamma and calculate threshold
|
||||||
for (size_t k = 1;; k++) {
|
gamma = dot(g, g);
|
||||||
|
threshold = ::max(epsilon_abs, epsilon * epsilon * gamma);
|
||||||
|
|
||||||
// calculate optimal step-size
|
// Allocate and calculate A*d for first iteration
|
||||||
double alpha = - dot(d, g) / dot(Ad, Ad);
|
if (gamma > epsilon) Ad = Ab * d;
|
||||||
|
}
|
||||||
|
|
||||||
// do step in new search direction
|
/** print */
|
||||||
axpy(alpha, d, x); // x += alpha*d
|
void print() {
|
||||||
if (k==maxIterations) break;
|
cout << "iteration = " << k << endl;
|
||||||
|
cout << "dotg = " << gamma << endl;
|
||||||
|
gtsam::print(g,"g");
|
||||||
|
gtsam::print(d,"d");
|
||||||
|
gtsam::print(Ad,"Ad");
|
||||||
|
}
|
||||||
|
|
||||||
|
/** step the solution */
|
||||||
|
double takeOptimalStep(V& x) {
|
||||||
|
double alpha = -dot(d, g) / dot(Ad, Ad); // calculate optimal step-size
|
||||||
|
axpy(alpha, d, x); // // do step in new search direction, x += alpha*d
|
||||||
|
return alpha;
|
||||||
|
}
|
||||||
|
|
||||||
|
/** take a step, return true if converged */
|
||||||
|
bool step(const S& Ab, V& x) {
|
||||||
|
k += 1; // increase iteration number
|
||||||
|
|
||||||
|
double alpha = takeOptimalStep(x);
|
||||||
|
|
||||||
|
if (k == maxIterations) return true; //---------------------------------->
|
||||||
|
|
||||||
// update gradient (or re-calculate at reset time)
|
// update gradient (or re-calculate at reset time)
|
||||||
if (k%reset==0)
|
if (k % reset == 0)
|
||||||
g = Ab.gradient(x);
|
g = Ab.gradient(x);
|
||||||
else
|
else
|
||||||
// axpy(alpha, Ab ^ Ad, g); // g += alpha*(Ab^Ad)
|
// axpy(alpha, Ab ^ Ad, g); // g += alpha*(Ab^Ad)
|
||||||
Ab.transposeMultiplyAdd(alpha, Ad, g);
|
Ab.transposeMultiplyAdd(alpha, Ad, g);
|
||||||
|
|
||||||
// check for convergence
|
// check for convergence
|
||||||
double gamma = dot(g, g);
|
double new_gamma = dot(g, g);
|
||||||
if (verbose) cout << "iteration " << k << ": alpha = " << alpha
|
if (verbose) cout << "iteration " << k << ": alpha = " << alpha << ", dotg = " << new_gamma << endl;
|
||||||
<< ", dotg = " << gamma << endl;
|
// print();
|
||||||
if (gamma < threshold) break;
|
if (new_gamma < threshold) return true; //---------------------------------->
|
||||||
|
|
||||||
// calculate new search direction
|
// calculate new search direction
|
||||||
if (steepest)
|
if (steepest)
|
||||||
d = g;
|
d = g;
|
||||||
else {
|
else {
|
||||||
double beta = gamma / gamma_old;
|
double beta = new_gamma / gamma;
|
||||||
gamma_old = gamma;
|
gamma = new_gamma;
|
||||||
// d = g + d*beta;
|
// d = g + d*beta;
|
||||||
scal(beta,d);
|
scal(beta, d);
|
||||||
axpy(1.0, g, d);
|
axpy(1.0, g, d);
|
||||||
}
|
}
|
||||||
|
|
||||||
// In-place recalculation Ad <- A*d to avoid re-allocating Ad
|
// In-place recalculation Ad <- A*d to avoid re-allocating Ad
|
||||||
Ab.multiplyInPlace(d,Ad);
|
Ab.multiplyInPlace(d, Ad);
|
||||||
|
return false;
|
||||||
}
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/**
|
||||||
|
* conjugate gradient method.
|
||||||
|
* S: linear system, V: step vector, E: errors
|
||||||
|
*/
|
||||||
|
template<class S, class V, class E>
|
||||||
|
V conjugateGradients(const S& Ab, V x, bool verbose, double epsilon,
|
||||||
|
double epsilon_abs, size_t maxIterations, bool steepest = false) {
|
||||||
|
|
||||||
|
CGState<S, V, E> state(Ab, x, verbose, epsilon, epsilon_abs, maxIterations, steepest);
|
||||||
|
if (state.gamma < state.threshold) return x;
|
||||||
|
|
||||||
|
if (verbose) cout << "CG: epsilon = " << epsilon << ", maxIterations = "
|
||||||
|
<< maxIterations << ", ||g0||^2 = " << state.gamma
|
||||||
|
<< ", threshold = " << state.threshold << endl;
|
||||||
|
|
||||||
|
// loop maxIterations times
|
||||||
|
while (!state.step(Ab, x))
|
||||||
|
;
|
||||||
|
|
||||||
return x;
|
return x;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -26,6 +26,8 @@ using namespace std;
|
||||||
using namespace gtsam;
|
using namespace gtsam;
|
||||||
using namespace example;
|
using namespace example;
|
||||||
|
|
||||||
|
static bool verbose = false;
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
TEST( Iterative, steepestDescent )
|
TEST( Iterative, steepestDescent )
|
||||||
{
|
{
|
||||||
|
@ -38,7 +40,6 @@ TEST( Iterative, steepestDescent )
|
||||||
// Do gradient descent
|
// Do gradient descent
|
||||||
GaussianFactorGraph fg2 = createGaussianFactorGraph();
|
GaussianFactorGraph fg2 = createGaussianFactorGraph();
|
||||||
VectorConfig zero = createZeroDelta();
|
VectorConfig zero = createZeroDelta();
|
||||||
bool verbose = false;
|
|
||||||
VectorConfig actual = steepestDescent(fg2, zero, verbose);
|
VectorConfig actual = steepestDescent(fg2, zero, verbose);
|
||||||
CHECK(assert_equal(expected,actual,1e-2));
|
CHECK(assert_equal(expected,actual,1e-2));
|
||||||
}
|
}
|
||||||
|
@ -62,20 +63,20 @@ TEST( Iterative, conjugateGradientDescent )
|
||||||
|
|
||||||
// Do conjugate gradient descent, System version
|
// Do conjugate gradient descent, System version
|
||||||
System Ab(A, b);
|
System Ab(A, b);
|
||||||
Vector actualX = conjugateGradientDescent(Ab, x0);
|
Vector actualX = conjugateGradientDescent(Ab, x0, verbose);
|
||||||
CHECK(assert_equal(expectedX,actualX,1e-9));
|
CHECK(assert_equal(expectedX,actualX,1e-9));
|
||||||
|
|
||||||
// Do conjugate gradient descent, Matrix version
|
// Do conjugate gradient descent, Matrix version
|
||||||
Vector actualX2 = conjugateGradientDescent(A, b, x0);
|
Vector actualX2 = conjugateGradientDescent(A, b, x0, verbose);
|
||||||
CHECK(assert_equal(expectedX,actualX2,1e-9));
|
CHECK(assert_equal(expectedX,actualX2,1e-9));
|
||||||
|
|
||||||
// Do conjugate gradient descent on factor graph
|
// Do conjugate gradient descent on factor graph
|
||||||
VectorConfig zero = createZeroDelta();
|
VectorConfig zero = createZeroDelta();
|
||||||
VectorConfig actual = conjugateGradientDescent(fg2, zero);
|
VectorConfig actual = conjugateGradientDescent(fg2, zero, verbose);
|
||||||
CHECK(assert_equal(expected,actual,1e-2));
|
CHECK(assert_equal(expected,actual,1e-2));
|
||||||
|
|
||||||
// Test method
|
// Test method
|
||||||
VectorConfig actual2 = fg2.conjugateGradientDescent(zero);
|
VectorConfig actual2 = fg2.conjugateGradientDescent(zero, verbose);
|
||||||
CHECK(assert_equal(expected,actual2,1e-2));
|
CHECK(assert_equal(expected,actual2,1e-2));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -122,7 +123,7 @@ TEST( Iterative, conjugateGradientDescent_soft_constraint )
|
||||||
zeros.insert("x2",zero(3));
|
zeros.insert("x2",zero(3));
|
||||||
|
|
||||||
GaussianFactorGraph fg = graph.linearize(config);
|
GaussianFactorGraph fg = graph.linearize(config);
|
||||||
VectorConfig actual = conjugateGradientDescent(fg, zeros, false, 1e-3, 1e-5, 100);
|
VectorConfig actual = conjugateGradientDescent(fg, zeros, verbose, 1e-3, 1e-5, 100);
|
||||||
|
|
||||||
VectorConfig expected;
|
VectorConfig expected;
|
||||||
expected.insert("x1", zero(3));
|
expected.insert("x1", zero(3));
|
||||||
|
@ -169,7 +170,7 @@ TEST( Iterative, subgraphPCG )
|
||||||
|
|
||||||
// Solve the subgraph PCG
|
// Solve the subgraph PCG
|
||||||
VectorConfig ybar = conjugateGradients<SubgraphPreconditioner, VectorConfig,
|
VectorConfig ybar = conjugateGradients<SubgraphPreconditioner, VectorConfig,
|
||||||
Errors> (system, zeros, false, 1e-5, 1e-5, 100);
|
Errors> (system, zeros, verbose, 1e-5, 1e-5, 100);
|
||||||
VectorConfig actual = system.x(ybar);
|
VectorConfig actual = system.x(ybar);
|
||||||
|
|
||||||
VectorConfig expected;
|
VectorConfig expected;
|
||||||
|
|
|
@ -210,7 +210,7 @@ TEST( SubgraphPreconditioner, conjugateGradients )
|
||||||
// Compare with non preconditioned version:
|
// Compare with non preconditioned version:
|
||||||
VectorConfig actual2 = conjugateGradientDescent(Ab, x1, verbose, epsilon,
|
VectorConfig actual2 = conjugateGradientDescent(Ab, x1, verbose, epsilon,
|
||||||
maxIterations);
|
maxIterations);
|
||||||
CHECK(assert_equal(xtrue,actual2,1e-5));
|
CHECK(assert_equal(xtrue,actual2,1e-4));
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
|
Loading…
Reference in New Issue