refactor the example to make it cleaner

release/4.3a0
Varun Agrawal 2021-10-21 16:33:32 -04:00
parent 03ac36c8c3
commit 1e84fd9cc4
1 changed files with 79 additions and 47 deletions

View File

@ -4,13 +4,15 @@ Example of application of ISAM2 for GPS-aided navigation on the KITTI VISION BEN
Author: Varun Agrawal
"""
import argparse
from typing import List
from typing import List, Tuple
import gtsam
import numpy as np
from gtsam import ISAM2, Point3, Pose3, noiseModel
from gtsam import ISAM2, Pose3, noiseModel
from gtsam.symbol_shorthand import B, V, X
GRAVITY = 9.8
class KittiCalibration:
"""Class to hold KITTI calibration info."""
@ -46,25 +48,8 @@ class GpsMeasurement:
self.position = position
def loadKittiData(imu_data_file: str = "KittiEquivBiasedImu.txt",
gps_data_file: str = "KittiGps_converted.txt",
imu_metadata_file: str = "KittiEquivBiasedImu_metadata.txt"):
"""
Load the KITTI Dataset.
"""
# Read IMU metadata and compute relative sensor pose transforms
# BodyPtx BodyPty BodyPtz BodyPrx BodyPry BodyPrz AccelerometerSigma
# GyroscopeSigma IntegrationSigma AccelerometerBiasSigma GyroscopeBiasSigma
# AverageDeltaT
imu_metadata_file = gtsam.findExampleDataFile(imu_metadata_file)
with open(imu_metadata_file, encoding='UTF-8') as imu_metadata:
print("-- Reading sensor metadata")
line = imu_metadata.readline() # Ignore the first line
line = imu_metadata.readline().strip()
data = list(map(float, line.split(' ')))
kitti_calibration = KittiCalibration(*data)
print("IMU metadata:", data)
def loadImuData(imu_data_file: str) -> List[ImuMeasurement]:
"""Helper to load the IMU data."""
# Read IMU data
# Time dt accelX accelY accelZ omegaX omegaY omegaZ
imu_data_file = gtsam.findExampleDataFile(imu_data_file)
@ -81,6 +66,11 @@ def loadKittiData(imu_data_file: str = "KittiEquivBiasedImu.txt",
np.asarray([gyro_x, gyro_y, gyro_z]))
imu_measurements.append(imu_measurement)
return imu_measurements
def loadGpsData(gps_data_file: str) -> List[GpsMeasurement]:
"""Helper to load the GPS data."""
# Read GPS data
# Time,X,Y,Z
gps_data_file = gtsam.findExampleDataFile(gps_data_file)
@ -94,12 +84,38 @@ def loadKittiData(imu_data_file: str = "KittiEquivBiasedImu.txt",
gps_measurement = GpsMeasurement(time, np.asarray([x, y, z]))
gps_measurements.append(gps_measurement)
return gps_measurements
def loadKittiData(
imu_data_file: str = "KittiEquivBiasedImu.txt",
gps_data_file: str = "KittiGps_converted.txt",
imu_metadata_file: str = "KittiEquivBiasedImu_metadata.txt"
) -> Tuple[KittiCalibration, List[ImuMeasurement], List[GpsMeasurement]]:
"""
Load the KITTI Dataset.
"""
# Read IMU metadata and compute relative sensor pose transforms
# BodyPtx BodyPty BodyPtz BodyPrx BodyPry BodyPrz AccelerometerSigma
# GyroscopeSigma IntegrationSigma AccelerometerBiasSigma GyroscopeBiasSigma
# AverageDeltaT
imu_metadata_file = gtsam.findExampleDataFile(imu_metadata_file)
with open(imu_metadata_file, encoding='UTF-8') as imu_metadata:
print("-- Reading sensor metadata")
line = imu_metadata.readline() # Ignore the first line
line = imu_metadata.readline().strip()
data = list(map(float, line.split(' ')))
kitti_calibration = KittiCalibration(*data)
print("IMU metadata:", data)
imu_measurements = loadImuData(imu_data_file)
gps_measurements = loadGpsData(gps_data_file)
return kitti_calibration, imu_measurements, gps_measurements
def getImuParams(kitti_calibration: KittiCalibration):
"""Get the IMU parameters from the KITTI calibration data."""
GRAVITY = 9.8
w_coriolis = np.zeros(3)
# Set IMU preintegration parameters
@ -156,7 +172,7 @@ def save_results(isam: gtsam.ISAM2, output_filename: str, first_gps_pose: int,
gps[0], gps[1], gps[2]))
def parse_args():
def parse_args() -> argparse.Namespace:
"""Parse command line arguments."""
parser = argparse.ArgumentParser()
parser.add_argument("--output_filename",
@ -164,24 +180,15 @@ def parse_args():
return parser.parse_args()
def main():
"""Main runner."""
args = parse_args()
kitti_calibration, imu_measurements, gps_measurements = loadKittiData()
if not kitti_calibration.bodyTimu.equals(Pose3(), 1e-8):
raise ValueError(
"Currently only support IMUinBody is identity, i.e. IMU and body frame are the same"
)
# Configure different variables
first_gps_pose = 1
gps_skip = 10
# Configure noise models
noise_model_gps = noiseModel.Diagonal.Precisions(
np.asarray([0, 0, 0] + [1.0 / 0.07] * 3))
def optimize(gps_measurements: List[GpsMeasurement],
imu_measurements: List[ImuMeasurement],
sigma_init_x: gtsam.noiseModel.Diagonal,
sigma_init_v: gtsam.noiseModel.Diagonal,
sigma_init_b: gtsam.noiseModel.Diagonal,
noise_model_gps: gtsam.noiseModel.Diagonal,
kitti_calibration: KittiCalibration, first_gps_pose: int,
gps_skip: int) -> gtsam.ISAM2:
"""Run ISAM2 optimization on the measurements."""
# Set initial conditions for the estimated trajectory
# initial pose is the reference frame (navigation frame)
current_pose_global = Pose3(gtsam.Rot3(),
@ -191,12 +198,6 @@ def main():
current_velocity_global = np.zeros(3)
current_bias = gtsam.imuBias.ConstantBias() # init with zero bias
sigma_init_x = noiseModel.Diagonal.Precisions(
np.asarray([0, 0, 0, 1, 1, 1]))
sigma_init_v = noiseModel.Diagonal.Sigmas(np.ones(3) * 1000.0)
sigma_init_b = noiseModel.Diagonal.Sigmas(
np.asarray([0.1] * 3 + [5.00e-05] * 3))
imu_params = getImuParams(kitti_calibration)
# Set ISAM2 parameters and create ISAM2 solver object
@ -325,6 +326,37 @@ def main():
current_pose_global.print()
print("\n")
return isam
def main():
"""Main runner."""
args = parse_args()
kitti_calibration, imu_measurements, gps_measurements = loadKittiData()
if not kitti_calibration.bodyTimu.equals(Pose3(), 1e-8):
raise ValueError(
"Currently only support IMUinBody is identity, i.e. IMU and body frame are the same"
)
# Configure different variables
first_gps_pose = 1
gps_skip = 10
# Configure noise models
noise_model_gps = noiseModel.Diagonal.Precisions(
np.asarray([0, 0, 0] + [1.0 / 0.07] * 3))
sigma_init_x = noiseModel.Diagonal.Precisions(
np.asarray([0, 0, 0, 1, 1, 1]))
sigma_init_v = noiseModel.Diagonal.Sigmas(np.ones(3) * 1000.0)
sigma_init_b = noiseModel.Diagonal.Sigmas(
np.asarray([0.1] * 3 + [5.00e-05] * 3))
isam = optimize(gps_measurements, imu_measurements, sigma_init_x,
sigma_init_v, sigma_init_b, noise_model_gps,
kitti_calibration, first_gps_pose, gps_skip)
save_results(isam, args.output_filename, first_gps_pose, gps_measurements)