Comments and standard BORG formatting

release/4.3a0
dellaert 2015-03-02 19:34:33 -08:00
parent b2dcf35e77
commit 1e58c0b0a2
1 changed files with 62 additions and 57 deletions

View File

@ -16,17 +16,15 @@
*/
#include <gtsam_unstable/geometry/Similarity3.h>
#include <gtsam/geometry/Point3.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/geometry/Rot3.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/base/Testable.h>
#include <CppUnitLite/TestHarness.h>
using namespace gtsam;
@ -35,10 +33,11 @@ using symbol_shorthand::X;
GTSAM_CONCEPT_TESTABLE_INST(Similarity3)
static Point3 P(0.2,0.7,-2);
static Rot3 R = Rot3::rodriguez(0.3,0,0);
static Similarity3 T(R,Point3(3.5,-8.2,4.2),1);
static Similarity3 T2(Rot3::rodriguez(0.3,0.2,0.1),Point3(3.5,-8.2,4.2),1);
static Point3 P(0.2, 0.7, -2);
static Rot3 R = Rot3::rodriguez(0.3, 0, 0);
static Similarity3 T(R, Point3(3.5, -8.2, 4.2), 1);
static Similarity3 T2(Rot3::rodriguez(0.3, 0.2, 0.1), Point3(3.5, -8.2, 4.2),
1);
static Similarity3 T3(Rot3::rodriguez(-90, 0, 0), Point3(1, 2, 3), 1);
//******************************************************************************
@ -63,39 +62,29 @@ TEST(Similarity3, Getters2) {
}
TEST(Similarity3, AdjointMap) {
Similarity3 test(Rot3::ypr(1,2,3).inverse(), Point3(4,5,6), 7);
Similarity3 test(Rot3::ypr(1, 2, 3).inverse(), Point3(4, 5, 6), 7);
Matrix7 result;
result << -1.5739, -2.4512, -6.3651, -50.7671, -11.2503, 16.8859, -28.0000,
6.3167, -2.9884, -0.4111, 0.8502, 8.6373, -49.7260, -35.0000,
-2.5734, -5.8362, 2.8839, 33.1363, 0.3024, 30.1811, -42.0000,
0, 0, 0, -0.2248, -0.3502, -0.9093, 0,
0, 0, 0, 0.9024, -0.4269, -0.0587, 0,
0, 0, 0, -0.3676, -0.8337, 0.4120, 0,
0, 0, 0, 0, 0, 0, 1.0000;
result << -1.5739, -2.4512, -6.3651, -50.7671, -11.2503, 16.8859, -28.0000, 6.3167, -2.9884, -0.4111, 0.8502, 8.6373, -49.7260, -35.0000, -2.5734, -5.8362, 2.8839, 33.1363, 0.3024, 30.1811, -42.0000, 0, 0, 0, -0.2248, -0.3502, -0.9093, 0, 0, 0, 0, 0.9024, -0.4269, -0.0587, 0, 0, 0, 0, -0.3676, -0.8337, 0.4120, 0, 0, 0, 0, 0, 0, 0, 1.0000;
EXPECT(assert_equal(result, test.AdjointMap(), 1e-3));
}
TEST(Similarity3, inverse) {
Similarity3 test(Rot3::ypr(1,2,3).inverse(), Point3(4,5,6), 7);
Similarity3 test(Rot3::ypr(1, 2, 3).inverse(), Point3(4, 5, 6), 7);
Matrix3 Re;
Re << -0.2248, 0.9024, -0.3676,
-0.3502, -0.4269, -0.8337,
-0.9093, -0.0587, 0.4120;
Re << -0.2248, 0.9024, -0.3676, -0.3502, -0.4269, -0.8337, -0.9093, -0.0587, 0.4120;
Vector3 te(-9.8472, 59.7640, 10.2125);
Similarity3 expected(Re, te, 1.0/7.0);
Similarity3 expected(Re, te, 1.0 / 7.0);
EXPECT(assert_equal(expected, test.inverse(), 1e-3));
}
TEST(Similarity3, multiplication) {
Similarity3 test1(Rot3::ypr(1,2,3).inverse(), Point3(4,5,6), 7);
Similarity3 test2(Rot3::ypr(1,2,3).inverse(), Point3(8,9,10), 11);
Similarity3 test1(Rot3::ypr(1, 2, 3).inverse(), Point3(4, 5, 6), 7);
Similarity3 test2(Rot3::ypr(1, 2, 3).inverse(), Point3(8, 9, 10), 11);
Matrix3 re;
re << 0.0688, 0.9863, -0.1496,
-0.5665, -0.0848, -0.8197,
-0.8211, 0.1412, 0.5530;
re << 0.0688, 0.9863, -0.1496, -0.5665, -0.0848, -0.8197, -0.8211, 0.1412, 0.5530;
Vector3 te(-13.6797, 3.2441, -5.7794);
Similarity3 expected(re, te, 77);
EXPECT(assert_equal(expected, test1*test2, 1e-2));
EXPECT(assert_equal(expected, test1 * test2, 1e-2));
}
//******************************************************************************
@ -118,14 +107,14 @@ TEST(Similarity3, Manifold) {
EXPECT(assert_equal(v3, sim2.localCoordinates(sim3)));
// Similarity3 other = Similarity3(Rot3::ypr(0.01, 0.02, 0.03), Point3(0.4, 0.5, 0.6), 1);
Similarity3 other = Similarity3(Rot3::ypr(0.1, 0.2, 0.3),Point3(4,5,6),1);
Similarity3 other = Similarity3(Rot3::ypr(0.1, 0.2, 0.3), Point3(4, 5, 6), 1);
Vector vlocal = sim.localCoordinates(other);
EXPECT(assert_equal(sim.retract(vlocal), other, 1e-2));
Similarity3 other2 = Similarity3(Rot3::ypr(0.3, 0, 0),Point3(4,5,6),1);
Rot3 R = Rot3::rodriguez(0.3,0,0);
Similarity3 other2 = Similarity3(Rot3::ypr(0.3, 0, 0), Point3(4, 5, 6), 1);
Rot3 R = Rot3::rodriguez(0.3, 0, 0);
Vector vlocal2 = sim.localCoordinates(other2);
@ -135,28 +124,27 @@ TEST(Similarity3, Manifold) {
}
/* ************************************************************************* */
TEST( Similarity3, retract_first_order)
{
TEST( Similarity3, retract_first_order) {
Similarity3 id;
Vector v = zero(7);
v(0) = 0.3;
EXPECT(assert_equal(Similarity3(R, Point3(), 1), id.retract(v),1e-2));
v(3)=0.2;v(4)=0.7;v(5)=-2;
EXPECT(assert_equal(Similarity3(R, P, 1),id.retract(v),1e-2));
EXPECT(assert_equal(Similarity3(R, Point3(), 1), id.retract(v), 1e-2));
v(3) = 0.2;
v(4) = 0.7;
v(5) = -2;
EXPECT(assert_equal(Similarity3(R, P, 1), id.retract(v), 1e-2));
}
/* ************************************************************************* */
TEST(Similarity3, localCoordinates_first_order)
{
Vector d12 = repeat(7,0.1);
TEST(Similarity3, localCoordinates_first_order) {
Vector d12 = repeat(7, 0.1);
d12(6) = 1.0;
Similarity3 t1 = T, t2 = t1.retract(d12);
EXPECT(assert_equal(d12, t1.localCoordinates(t2)));
}
/* ************************************************************************* */
TEST(Similarity3, manifold_first_order)
{
TEST(Similarity3, manifold_first_order) {
Similarity3 t1 = T;
Similarity3 t2 = T3;
Similarity3 origin;
@ -166,48 +154,62 @@ TEST(Similarity3, manifold_first_order)
EXPECT(assert_equal(t1, t2.retract(d21)));
}
//******************************************************************************
// Test very simple prior optimization example
TEST(Similarity3, Optimization) {
// Create a PriorFactor with a Sim3 prior
Similarity3 prior = Similarity3(Rot3::ypr(0.1, 0.2, 0.3), Point3(1, 2, 3), 4);
noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(7, 1);
Symbol key('x',1);
Symbol key('x', 1);
PriorFactor<Similarity3> factor(key, prior, model);
// Create graph
NonlinearFactorGraph graph;
graph.push_back(factor);
// Create initial estimate with identity transform
Values initial;
initial.insert<Similarity3>(key, Similarity3());
// Optimize
Values result;
LevenbergMarquardtParams params;
params.setVerbosityLM("TRYCONFIG");
result = LevenbergMarquardtOptimizer(graph, initial).optimize();
// After optimization, result should be prior
EXPECT(assert_equal(prior, result.at<Similarity3>(key), 1e-4));
}
//******************************************************************************
// Test optimization with both Prior and BetweenFactors
TEST(Similarity3, Optimization2) {
Similarity3 prior = Similarity3();
Similarity3 m1 = Similarity3(Rot3::ypr(M_PI/4.0, 0, 0), Point3(2.0, 0, 0), 1.0);
Similarity3 m2 = Similarity3(Rot3::ypr(M_PI/2.0, 0, 0), Point3(sqrt(8)*0.9, 0, 0), 1.0);
Similarity3 m3 = Similarity3(Rot3::ypr(3*M_PI/4.0, 0, 0), Point3(sqrt(32)*0.8, 0, 0), 1.0);
Similarity3 m4 = Similarity3(Rot3::ypr(M_PI/2.0, 0, 0), Point3(6*0.7, 0, 0), 1.0);
Similarity3 m1 = Similarity3(Rot3::ypr(M_PI / 4.0, 0, 0), Point3(2.0, 0, 0),
1.0);
Similarity3 m2 = Similarity3(Rot3::ypr(M_PI / 2.0, 0, 0),
Point3(sqrt(8) * 0.9, 0, 0), 1.0);
Similarity3 m3 = Similarity3(Rot3::ypr(3 * M_PI / 4.0, 0, 0),
Point3(sqrt(32) * 0.8, 0, 0), 1.0);
Similarity3 m4 = Similarity3(Rot3::ypr(M_PI / 2.0, 0, 0),
Point3(6 * 0.7, 0, 0), 1.0);
Similarity3 loop = Similarity3(1.42);
//prior.print("Goal Transform");
noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(7, 0.01);
noiseModel::Isotropic::shared_ptr model = noiseModel::Isotropic::Sigma(7,
0.01);
SharedDiagonal betweenNoise = noiseModel::Diagonal::Sigmas(
(Vector(7) << 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 10).finished());
(Vector(7) << 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 10).finished());
SharedDiagonal betweenNoise2 = noiseModel::Diagonal::Sigmas(
(Vector(7) << 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 1.0).finished());
PriorFactor<Similarity3> factor(X(1), prior, model);
(Vector(7) << 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 1.0).finished());
PriorFactor<Similarity3> factor(X(1), prior, model); // Prior !
BetweenFactor<Similarity3> b1(X(1), X(2), m1, betweenNoise);
BetweenFactor<Similarity3> b2(X(2), X(3), m2, betweenNoise);
BetweenFactor<Similarity3> b3(X(3), X(4), m3, betweenNoise);
BetweenFactor<Similarity3> b4(X(4), X(5), m4, betweenNoise);
BetweenFactor<Similarity3> lc(X(5), X(1), loop, betweenNoise2);
// Create graph
NonlinearFactorGraph graph;
graph.push_back(factor);
graph.push_back(b1);
@ -217,13 +219,16 @@ TEST(Similarity3, Optimization2) {
graph.push_back(lc);
//graph.print("Full Graph\n");
Values initial;
initial.insert<Similarity3>(X(1), Similarity3());
initial.insert<Similarity3>(X(2), Similarity3(Rot3::ypr(M_PI/2.0, 0, 0), Point3(1, 0, 0), 1.1));
initial.insert<Similarity3>(X(3), Similarity3(Rot3::ypr(2.0*M_PI/2.0, 0, 0), Point3(0.9, 1.1, 0), 1.2));
initial.insert<Similarity3>(X(4), Similarity3(Rot3::ypr(3.0*M_PI/2.0, 0, 0), Point3(0, 1, 0), 1.3));
initial.insert<Similarity3>(X(5), Similarity3(Rot3::ypr(4.0*M_PI/2.0, 0, 0), Point3(0, 0, 0), 1.0));
initial.insert<Similarity3>(X(2),
Similarity3(Rot3::ypr(M_PI / 2.0, 0, 0), Point3(1, 0, 0), 1.1));
initial.insert<Similarity3>(X(3),
Similarity3(Rot3::ypr(2.0 * M_PI / 2.0, 0, 0), Point3(0.9, 1.1, 0), 1.2));
initial.insert<Similarity3>(X(4),
Similarity3(Rot3::ypr(3.0 * M_PI / 2.0, 0, 0), Point3(0, 1, 0), 1.3));
initial.insert<Similarity3>(X(5),
Similarity3(Rot3::ypr(4.0 * M_PI / 2.0, 0, 0), Point3(0, 0, 0), 1.0));
//initial.print("Initial Estimate\n");