Support non positive definite Hessian factors while doing EliminatePreferCholesky with some constrained factors.

Currently, when eliminating a constrained variable, EliminatePreferCholesky converts every other factors to JacobianFactor before doing the special QR factorization for constrained variables. Unfortunately, after a constrained nonlinear graph is linearized, new hessian factors from constraints, multiplied with the dual variable  (-lambda*\hessian{c} terms in the Lagrangian objective function), might become negative definite, thus cannot be converted to JacobianFactors.

Following EliminateCholesky, this version of EliminatePreferCholesky for constrained var gathers all unconstrained factors into a big joint HessianFactor before converting it into a JacobianFactor to be eliminiated by QR together with the other constrained factors.

Of course, this might not solve the non-positive-definite problem entirely, because (1) the original hessian factors might be non-positive definite and (2) large strange value of lambdas might cause the joint factor non-positive definite [is this true?]. But at least, this will help in typical cases.
release/4.3a0
thduynguyen 2014-05-03 18:04:37 -04:00
parent fc1f5ff6a8
commit 1e3ae3b3d3
8 changed files with 95 additions and 29 deletions

2
.gitignore vendored
View File

@ -1,3 +1,5 @@
/build*
*.pyc
*.DS_Store
/debug/
*.txt.user

View File

@ -371,16 +371,32 @@ namespace gtsam {
}
/* ************************************************************************* */
// x += alpha*A'*e
void GaussianFactorGraph::transposeMultiplyAdd(double alpha, const Errors& e,
VectorValues& x) const {
// For each factor add the gradient contribution
Errors::const_iterator ei = e.begin();
BOOST_FOREACH(const sharedFactor& Ai_G, *this) {
JacobianFactor::shared_ptr Ai = convertToJacobianFactorPtr(Ai_G);
Ai->transposeMultiplyAdd(alpha, *(ei++), x);
std::pair<GaussianFactorGraph, GaussianFactorGraph> GaussianFactorGraph::splitConstraints() const {
typedef JacobianFactor J;
GaussianFactorGraph unconstraints, constraints;
BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, *this) {
J::shared_ptr jacobian(boost::dynamic_pointer_cast<J>(factor));
if (jacobian && jacobian->get_model() && jacobian->get_model()->isConstrained()) {
constraints.push_back(jacobian);
}
else {
unconstraints.push_back(factor);
}
}
return make_pair(unconstraints, constraints);
}
/* ************************************************************************* */
// x += alpha*A'*e
void GaussianFactorGraph::transposeMultiplyAdd(double alpha, const Errors& e,
VectorValues& x) const {
// For each factor add the gradient contribution
Errors::const_iterator ei = e.begin();
BOOST_FOREACH(const sharedFactor& Ai_G, *this) {
JacobianFactor::shared_ptr Ai = convertToJacobianFactorPtr(Ai_G);
Ai->transposeMultiplyAdd(alpha, *(ei++), x);
}
}
}
///* ************************************************************************* */
//void residual(const GaussianFactorGraph& fg, const VectorValues &x, VectorValues &r) {

View File

@ -313,6 +313,13 @@ namespace gtsam {
/// @}
/**
* Split constraints and unconstrained factors into two different graphs
* @return a pair of <unconstrained, constrained> graphs
*/
std::pair<GaussianFactorGraph, GaussianFactorGraph> splitConstraints() const;
private:
/** Serialization function */
friend class boost::serialization::access;

View File

@ -641,8 +641,21 @@ EliminatePreferCholesky(const GaussianFactorGraph& factors, const Ordering& keys
// all factors to JacobianFactors. Otherwise, we can convert all factors
// to HessianFactors. This is because QR can handle constrained noise
// models but Cholesky cannot.
if (hasConstraints(factors))
return EliminateQR(factors, keys);
GaussianFactorGraph unconstraints, constraints;
boost::tie(unconstraints, constraints) = factors.splitConstraints();
if (constraints.size()>0) {
// Build joint factor
HessianFactor::shared_ptr jointFactor;
try {
jointFactor = boost::make_shared<HessianFactor>(unconstraints, Scatter(factors, keys));
} catch(std::invalid_argument&) {
throw InvalidDenseElimination(
"EliminateCholesky was called with a request to eliminate variables that are not\n"
"involved in the provided factors.");
}
constraints.push_back(jointFactor);
return EliminateQR(constraints, keys);
}
else
return EliminateCholesky(factors, keys);
}

View File

@ -115,6 +115,9 @@ JacobianFactor::JacobianFactor(const HessianFactor& factor) :
bool success;
boost::tie(maxrank, success) = choleskyCareful(Ab_.matrix());
factor.print("HessianFactor to convert: ");
cout << "Maxrank: " << maxrank << ", success: " << int(success) << endl;
// Check for indefinite system
if (!success)
throw IndeterminantLinearSystemException(factor.keys().front());

View File

@ -360,17 +360,15 @@ bool QPSolver::iterateInPlace(GaussianFactorGraph& workingGraph, VectorValues& c
}
/* ************************************************************************* */
VectorValues QPSolver::optimize(const VectorValues& initials,
boost::optional<VectorValues&> lambdas) const {
std::pair<VectorValues, VectorValues> QPSolver::optimize(const VectorValues& initials) const {
GaussianFactorGraph workingGraph = graph_.clone();
VectorValues currentSolution = initials;
VectorValues workingLambdas;
VectorValues lambdas;
bool converged = false;
while (!converged) {
converged = iterateInPlace(workingGraph, currentSolution, workingLambdas);
converged = iterateInPlace(workingGraph, currentSolution, lambdas);
}
if (lambdas) *lambdas = workingLambdas;
return currentSolution;
return make_pair(currentSolution, lambdas);
}
/* ************************************************************************* */
@ -500,14 +498,14 @@ std::pair<bool, VectorValues> QPSolver::findFeasibleInitialValues() const {
}
/* ************************************************************************* */
VectorValues QPSolver::optimize(boost::optional<VectorValues&> lambdas) const {
std::pair<VectorValues, VectorValues> QPSolver::optimize() const {
bool isFeasible;
VectorValues initials;
boost::tie(isFeasible, initials) = findFeasibleInitialValues();
if (!isFeasible) {
throw std::runtime_error("LP subproblem is infeasible!");
}
return optimize(initials, lambdas);
return optimize(initials);
}
} /* namespace gtsam */

View File

@ -125,16 +125,17 @@ public:
* a feasible initial value, otherwise the solution will be wrong.
* If you don't know a feasible initial value, use the other version
* of optimize().
* @return a pair of <primal, dual> solutions
*/
VectorValues optimize(const VectorValues& initials,
boost::optional<VectorValues&> lambdas = boost::none) const;
std::pair<VectorValues, VectorValues> optimize(const VectorValues& initials) const;
/** Optimize without an initial value.
* This version of optimize will try to find a feasible initial value by solving
* an LP program before solving this QP graph.
* TODO: If no feasible initial point exists, it should throw an InfeasibilityException!
* @return a pair of <primal, dual> solutions
*/
VectorValues optimize(boost::optional<VectorValues&> lambdas = boost::none) const;
std::pair<VectorValues, VectorValues> optimize() const;
/**

View File

@ -165,7 +165,8 @@ TEST(QPSolver, optimizeForst10book_pg171Ex5) {
VectorValues initials;
initials.insert(X(1), zero(1));
initials.insert(X(2), zero(1));
VectorValues solution = solver.optimize(initials);
VectorValues solution;
boost::tie(solution, boost::tuples::ignore) = solver.optimize(initials);
VectorValues expectedSolution;
expectedSolution.insert(X(1), (Vector(1)<< 1.5));
expectedSolution.insert(X(2), (Vector(1)<< 0.5));
@ -205,7 +206,8 @@ TEST(QPSolver, optimizeMatlabEx) {
VectorValues initials;
initials.insert(X(1), zero(1));
initials.insert(X(2), zero(1));
VectorValues solution = solver.optimize(initials);
VectorValues solution;
boost::tie(solution, boost::tuples::ignore) = solver.optimize(initials);
VectorValues expectedSolution;
expectedSolution.insert(X(1), (Vector(1)<< 2.0/3.0));
expectedSolution.insert(X(2), (Vector(1)<< 4.0/3.0));
@ -239,7 +241,8 @@ TEST(QPSolver, optimizeNocedal06bookEx16_4) {
initials.insert(X(1), (Vector(1)<<2.0));
initials.insert(X(2), zero(1));
VectorValues solution = solver.optimize(initials);
VectorValues solution;
boost::tie(solution, boost::tuples::ignore) = solver.optimize(initials);
VectorValues expectedSolution;
expectedSolution.insert(X(1), (Vector(1)<< 1.4));
expectedSolution.insert(X(2), (Vector(1)<< 1.7));
@ -310,7 +313,8 @@ TEST(QPSolver, optimizeNocedal06bookEx16_4_findInitialPoint) {
EXPECT(assert_equal(1.0*ones(1), initials.at(X(1))));
EXPECT(assert_equal(0.0*ones(1), initials.at(X(2))));
VectorValues solution = solver.optimize();
VectorValues solution;
boost::tie(solution, boost::tuples::ignore) = solver.optimize();
EXPECT(assert_equal(2.0*ones(1), solution.at(X(1))));
EXPECT(assert_equal(0.5*ones(1), solution.at(X(2))));
}
@ -326,14 +330,36 @@ TEST(QPSolver, optimizeNocedal06bookEx16_4_2) {
expectedSolution.insert(X(1), (Vector(1)<< 1.4));
expectedSolution.insert(X(2), (Vector(1)<< 1.7));
VectorValues solution = solver.optimize(initials);
VectorValues solution;
boost::tie(solution, boost::tuples::ignore) = solver.optimize(initials);
// THIS should fail because of the bad infeasible initial point!!
// CHECK(assert_equal(expectedSolution, solution, 1e-7));
VectorValues solution2 = solver.optimize();
VectorValues solution2;
boost::tie(solution2, boost::tuples::ignore) = solver.optimize();
CHECK(assert_equal(expectedSolution, solution2, 1e-7));
}
/* ************************************************************************* */
TEST(QPSolver, failedSubproblem) {
GaussianFactorGraph graph;
graph.push_back(JacobianFactor(X(1), eye(2), zero(2)));
graph.push_back(HessianFactor(X(1), zeros(2,2), zero(2), 100.0));
graph.push_back(JacobianFactor(X(1), (Matrix(1,2)<<-1.0, 0.0), -ones(1),
noiseModel::Constrained::MixedSigmas(-ones(1))));
VectorValues expected;
expected.insert(X(1), (Vector(2)<< 1.0, 0.0));
QPSolver solver(graph);
VectorValues solution;
boost::tie(solution, boost::tuples::ignore) = solver.optimize();
graph.print("Graph: ");
solution.print("Solution: ");
CHECK(assert_equal(expected, solution, 1e-7));
}
/* ************************************************************************* */
int main() {
TestResult tr;