Updated MATLAB SBAExample
parent
cd69779754
commit
1db1663800
|
@ -30,7 +30,8 @@ cameraNoiseSigmas = [0.001 0.001 0.001 0.1 0.1 0.1 ...
|
||||||
0.001*ones(1,5)]';
|
0.001*ones(1,5)]';
|
||||||
|
|
||||||
%% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph)
|
%% Create the graph (defined in visualSLAM.h, derived from NonlinearFactorGraph)
|
||||||
graph = sparseBA.Graph;
|
import gtsam.*
|
||||||
|
graph = NonlinearFactorGraph;
|
||||||
|
|
||||||
|
|
||||||
%% Add factors for all measurements
|
%% Add factors for all measurements
|
||||||
|
@ -39,7 +40,7 @@ measurementNoise = noiseModel.Isotropic.Sigma(2,measurementNoiseSigma);
|
||||||
for i=1:length(data.Z)
|
for i=1:length(data.Z)
|
||||||
for k=1:length(data.Z{i})
|
for k=1:length(data.Z{i})
|
||||||
j = data.J{i}{k};
|
j = data.J{i}{k};
|
||||||
graph.addSimpleCameraMeasurement(data.Z{i}{k}, measurementNoise, symbol('c',i), symbol('p',j));
|
graph.add(GeneralSFMFactorCal3_S2(data.Z{i}{k}, measurementNoise, symbol('c',i), symbol('p',j)));
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
|
@ -47,10 +48,10 @@ end
|
||||||
import gtsam.*
|
import gtsam.*
|
||||||
cameraPriorNoise = noiseModel.Diagonal.Sigmas(cameraNoiseSigmas);
|
cameraPriorNoise = noiseModel.Diagonal.Sigmas(cameraNoiseSigmas);
|
||||||
firstCamera = SimpleCamera(truth.cameras{1}.pose, truth.K);
|
firstCamera = SimpleCamera(truth.cameras{1}.pose, truth.K);
|
||||||
graph.addSimpleCameraPrior(symbol('c',1), firstCamera, cameraPriorNoise);
|
graph.add(PriorFactorSimpleCamera(symbol('c',1), firstCamera, cameraPriorNoise));
|
||||||
|
|
||||||
pointPriorNoise = noiseModel.Isotropic.Sigma(3,pointNoiseSigma);
|
pointPriorNoise = noiseModel.Isotropic.Sigma(3,pointNoiseSigma);
|
||||||
graph.addPointPrior(symbol('p',1), truth.points{1}, pointPriorNoise);
|
graph.add(PriorFactorPoint3(symbol('p',1), truth.points{1}, pointPriorNoise));
|
||||||
|
|
||||||
%% Print the graph
|
%% Print the graph
|
||||||
graph.print(sprintf('\nFactor graph:\n'));
|
graph.print(sprintf('\nFactor graph:\n'));
|
||||||
|
@ -58,15 +59,15 @@ graph.print(sprintf('\nFactor graph:\n'));
|
||||||
|
|
||||||
%% Initialize cameras and points close to ground truth in this example
|
%% Initialize cameras and points close to ground truth in this example
|
||||||
import gtsam.*
|
import gtsam.*
|
||||||
initialEstimate = sparseBA.Values;
|
initialEstimate = Values;
|
||||||
for i=1:size(truth.cameras,2)
|
for i=1:size(truth.cameras,2)
|
||||||
pose_i = truth.cameras{i}.pose.retract(0.1*randn(6,1));
|
pose_i = truth.cameras{i}.pose.retract(0.1*randn(6,1));
|
||||||
camera_i = SimpleCamera(pose_i, truth.K);
|
camera_i = SimpleCamera(pose_i, truth.K);
|
||||||
initialEstimate.insertSimpleCamera(symbol('c',i), camera_i);
|
initialEstimate.insert(symbol('c',i), camera_i);
|
||||||
end
|
end
|
||||||
for j=1:size(truth.points,2)
|
for j=1:size(truth.points,2)
|
||||||
point_j = truth.points{j}.retract(0.1*randn(3,1));
|
point_j = truth.points{j}.retract(0.1*randn(3,1));
|
||||||
initialEstimate.insertPoint(symbol('p',j), point_j);
|
initialEstimate.insert(symbol('p',j), point_j);
|
||||||
end
|
end
|
||||||
initialEstimate.print(sprintf('\nInitial estimate:\n '));
|
initialEstimate.print(sprintf('\nInitial estimate:\n '));
|
||||||
|
|
||||||
|
@ -77,7 +78,7 @@ parameters = LevenbergMarquardtParams;
|
||||||
parameters.setlambdaInitial(1.0);
|
parameters.setlambdaInitial(1.0);
|
||||||
parameters.setVerbosityLM('trylambda');
|
parameters.setVerbosityLM('trylambda');
|
||||||
|
|
||||||
optimizer = graph.optimizer(initialEstimate, parameters);
|
optimizer = LevenbergMarquardtOptimizer(graph, initialEstimate, parameters);
|
||||||
|
|
||||||
for i=1:5
|
for i=1:5
|
||||||
optimizer.iterate();
|
optimizer.iterate();
|
||||||
|
|
Loading…
Reference in New Issue