From 1d62faa5a5a055e32ea34a96ffad0c2056fdf4c1 Mon Sep 17 00:00:00 2001 From: dellaert Date: Thu, 28 Jan 2016 01:32:36 -0800 Subject: [PATCH] Refactored plot without underscores --- python/gtsam_utils/__init__.py | 2 +- python/gtsam_utils/plot.py | 59 ++++++++++++++++++++++++++++++++++ 2 files changed, 60 insertions(+), 1 deletion(-) create mode 100644 python/gtsam_utils/plot.py diff --git a/python/gtsam_utils/__init__.py b/python/gtsam_utils/__init__.py index 0ef2dfcd3..56c55aa94 100644 --- a/python/gtsam_utils/__init__.py +++ b/python/gtsam_utils/__init__.py @@ -1 +1 @@ -from ._plot import * +from .plot import * diff --git a/python/gtsam_utils/plot.py b/python/gtsam_utils/plot.py new file mode 100644 index 000000000..84a388bbb --- /dev/null +++ b/python/gtsam_utils/plot.py @@ -0,0 +1,59 @@ +import numpy as np +import matplotlib.pyplot as plt +from mpl_toolkits.mplot3d import Axes3D as _Axes3D + +def plotPoint3(fignum, point, linespec): + fig = plt.figure(fignum) + ax = fig.gca(projection='3d') + ax.plot([point.x()], [point.y()], [point.z()], linespec) + + +def plot3DPoints(fignum, values, linespec, marginals=None): + # PLOT3DPOINTS Plots the Point3's in a values, with optional covariances + # Finds all the Point3 objects in the given Values object and plots them. + # If a Marginals object is given, this function will also plot marginal + # covariance ellipses for each point. + + keys = values.keys() + + # Plot points and covariance matrices + for key in keys: + try: + p = values.atPoint3(key); + # if haveMarginals + # P = marginals.marginalCovariance(key); + # gtsam.plotPoint3(p, linespec, P); + # else + plotPoint3(fignum, p, linespec); + except RuntimeError: + continue + # I guess it's not a Point3 + +def plotPose3(fignum, pose, axisLength=0.1): + # get figure object + fig = plt.figure(fignum) + ax = fig.gca(projection='3d') + + # get rotation and translation (center) + gRp = pose.rotation().matrix() # rotation from pose to global + C = pose.translation().vector() + + # draw the camera axes + xAxis = C + gRp[:, 0] * axisLength + L = np.append(C[np.newaxis], xAxis[np.newaxis], axis=0) + ax.plot(L[:, 0], L[:, 1], L[:, 2], 'r-') + + yAxis = C + gRp[:, 1] * axisLength + L = np.append(C[np.newaxis], yAxis[np.newaxis], axis=0) + ax.plot(L[:, 0], L[:, 1], L[:, 2], 'g-') + + zAxis = C + gRp[:, 2] * axisLength + L = np.append(C[np.newaxis], zAxis[np.newaxis], axis=0) + ax.plot(L[:, 0], L[:, 1], L[:, 2], 'b-') + + # # plot the covariance + # if (nargin>2) && (~isempty(P)) + # pPp = P(4:6,4:6); % covariance matrix in pose coordinate frame + # gPp = gRp*pPp*gRp'; % convert the covariance matrix to global coordinate frame + # gtsam.covarianceEllipse3D(C,gPp); + # end