Added logDensity and evaluate to Gaussian conditional and Bayes net

release/4.3a0
Frank Dellaert 2022-12-28 10:59:01 -05:00
parent 8d4dc3d880
commit 1d3a7d4753
6 changed files with 98 additions and 40 deletions

View File

@ -224,5 +224,19 @@ namespace gtsam {
}
/* ************************************************************************* */
double GaussianBayesNet::logDensity(const VectorValues& x) const {
double sum = 0.0;
for (const auto& conditional : *this) {
if (conditional) sum += conditional->logDensity(x);
}
return sum;
}
/* ************************************************************************* */
double GaussianBayesNet::evaluate(const VectorValues& x) const {
return exp(logDensity(x));
}
/* ************************************************************************* */
} // namespace gtsam

View File

@ -88,6 +88,20 @@ namespace gtsam {
/// @name Standard Interface
/// @{
/**
* Calculate log-density for given values `x`:
* -0.5*(error + n*log(2*pi) + log det(Sigma))
* where x is the vector of values, and Sigma is the covariance matrix.
*/
double logDensity(const VectorValues& x) const;
/**
* Calculate probability density for given values `x`:
* exp(-0.5*error(x)) / sqrt((2*pi)^n*det(Sigma))
* where x is the vector of values, and Sigma is the covariance matrix.
*/
double evaluate(const VectorValues& x) const;
/// Solve the GaussianBayesNet, i.e. return \f$ x = R^{-1}*d \f$, by
/// back-substitution
VectorValues optimize() const;

View File

@ -169,6 +169,20 @@ double GaussianConditional::logDeterminant() const {
return logDet;
}
/* ************************************************************************* */
double GaussianConditional::logDensity(const VectorValues& x) const {
constexpr double log2pi = 1.8378770664093454835606594728112;
size_t n = d().size();
// log det(Sigma)) = - 2 * logDeterminant()
double sum = error(x) + n * log2pi - 2 * logDeterminant();
return -0.5 * sum;
}
/* ************************************************************************* */
double GaussianConditional::evaluate(const VectorValues& x) const {
return exp(logDensity(x));
}
/* ************************************************************************* */
VectorValues GaussianConditional::solve(const VectorValues& x) const {
// Concatenate all vector values that correspond to parent variables

View File

@ -121,6 +121,20 @@ namespace gtsam {
/// @name Standard Interface
/// @{
/**
* Calculate log-density for given values `x`:
* -0.5*(error + n*log(2*pi) + log det(Sigma))
* where x is the vector of values, and Sigma is the covariance matrix.
*/
double logDensity(const VectorValues& x) const;
/**
* Calculate probability density for given values `x`:
* exp(-0.5*error(x)) / sqrt((2*pi)^n*det(Sigma))
* where x is the vector of values, and Sigma is the covariance matrix.
*/
double evaluate(const VectorValues& x) const;
/** Return a view of the upper-triangular R block of the conditional */
constABlock R() const { return Ab_.range(0, nrFrontals()); }
@ -134,9 +148,7 @@ namespace gtsam {
const constBVector d() const { return BaseFactor::getb(); }
/**
* @brief Compute the log determinant of the Gaussian conditional.
* The determinant is computed using the R matrix, which is upper
* triangular.
* @brief Compute the log determinant of the R matrix.
* For numerical stability, the determinant is computed in log
* form, so it is a summation rather than a multiplication.
*
@ -145,8 +157,7 @@ namespace gtsam {
double logDeterminant() const;
/**
* @brief Compute the determinant of the conditional from the
* upper-triangular R matrix.
* @brief Compute the determinant of the R matrix.
*
* The determinant is computed in log form (hence summation) for numerical
* stability and then exponentiated.

View File

@ -68,39 +68,6 @@ TEST( GaussianBayesNet, Matrix )
}
/* ************************************************************************* */
/**
* Calculate log-density for given values `x`:
* -0.5*(error + n*log(2*pi) + log det(Sigma))
* where x is the vector of values, and Sigma is the covariance matrix.
*/
double logDensity(const GaussianConditional::shared_ptr& gc,
const VectorValues& x) {
constexpr double log2pi = 1.8378770664093454835606594728112;
size_t n = gc->d().size();
// log det(Sigma)) = - 2 * gc->logDeterminant()
double sum = gc->error(x) + n * log2pi - 2 * gc->logDeterminant();
return -0.5 * sum;
}
/**
* Calculate probability density for given values `x`:
* exp(-0.5*error(x)) / sqrt((2*pi)^n*det(Sigma))
* where x is the vector of values, and Sigma is the covariance matrix.
*/
double evaluate(const GaussianConditional::shared_ptr& gc,
const VectorValues& x) {
return exp(logDensity(gc, x));
}
/** Calculate probability for given values `x` */
double evaluate(const GaussianBayesNet& gbn, const VectorValues& x) {
double density = 1.0;
for (const auto& conditional : gbn) {
if (conditional) density *= evaluate(conditional, x);
}
return density;
}
// Check that the evaluate function matches direct calculation with R.
TEST(GaussianBayesNet, Evaluate1) {
// Let's evaluate at the mean
@ -115,7 +82,7 @@ TEST(GaussianBayesNet, Evaluate1) {
// the normalization constant 1.0/sqrt((2*pi*Sigma).det()).
// The covariance matrix inv(Sigma) = R'*R, so the determinant is
const double expected = sqrt((invSigma / (2 * M_PI)).determinant());
const double actual = evaluate(smallBayesNet, mean);
const double actual = smallBayesNet.evaluate(mean);
EXPECT_DOUBLES_EQUAL(expected, actual, 1e-9);
}
@ -126,7 +93,7 @@ TEST(GaussianBayesNet, Evaluate2) {
const Matrix R = noisyBayesNet.matrix().first;
const Matrix invSigma = R.transpose() * R;
const double expected = sqrt((invSigma / (2 * M_PI)).determinant());
const double actual = evaluate(noisyBayesNet, mean);
const double actual = noisyBayesNet.evaluate(mean);
EXPECT_DOUBLES_EQUAL(expected, actual, 1e-9);
}

View File

@ -130,6 +130,44 @@ TEST( GaussianConditional, equals )
EXPECT( expected.equals(actual) );
}
namespace density {
static const Key key = 77;
static const auto unitPrior =
GaussianConditional(key, Vector1::Constant(5), I_1x1),
widerPrior =
GaussianConditional(key, Vector1::Constant(5), I_1x1,
noiseModel::Isotropic::Sigma(1, 3.0));
} // namespace density
/* ************************************************************************* */
// Check that the evaluate function matches direct calculation with R.
TEST(GaussianConditional, Evaluate1) {
// Let's evaluate at the mean
const VectorValues mean = density::unitPrior.solve(VectorValues());
// We get the Hessian matrix, which has noise model applied!
const Matrix invSigma = density::unitPrior.information();
// A Gaussian density ~ exp (-0.5*(Rx-d)'*(Rx-d))
// which at the mean is 1.0! So, the only thing we need to calculate is
// the normalization constant 1.0/sqrt((2*pi*Sigma).det()).
// The covariance matrix inv(Sigma) = R'*R, so the determinant is
const double expected = sqrt((invSigma / (2 * M_PI)).determinant());
const double actual = density::unitPrior.evaluate(mean);
EXPECT_DOUBLES_EQUAL(expected, actual, 1e-9);
}
// Check the evaluate with non-unit noise.
TEST(GaussianConditional, Evaluate2) {
// See comments in test above.
const VectorValues mean = density::widerPrior.solve(VectorValues());
const Matrix R = density::widerPrior.R();
const Matrix invSigma = density::widerPrior.information();
const double expected = sqrt((invSigma / (2 * M_PI)).determinant());
const double actual = density::widerPrior.evaluate(mean);
EXPECT_DOUBLES_EQUAL(expected, actual, 1e-9);
}
/* ************************************************************************* */
TEST( GaussianConditional, solve )
{