changed main algorithm to allow recovery of exact solution
parent
75e29dc015
commit
1d093e388d
|
|
@ -67,16 +67,16 @@ namespace gtsam {
|
|||
/** Create a Bayes Tree from a nonlinear factor graph */
|
||||
template<class Conditional, class Config>
|
||||
ISAM2<Conditional, Config>::ISAM2(const NonlinearFactorGraph<Config>& nlfg, const Ordering& ordering, const Config& config)
|
||||
: BayesTree<Conditional>(nlfg.linearize(config).eliminate(ordering)), nonlinearFactors_(nlfg), theta_(config) {
|
||||
: BayesTree<Conditional>(nlfg.linearize(config).eliminate(ordering)), theta_(config), thetaFuture_(config), nonlinearFactors_(nlfg) {
|
||||
// todo: repeats calculation above, just to set "cached"
|
||||
_eliminate_const(nlfg.linearize(config), cached_, ordering);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
template<class Conditional, class Config>
|
||||
boost::shared_ptr<FactorGraph<NonlinearFactor<Config> > >
|
||||
FactorGraph<NonlinearFactor<Config> >
|
||||
ISAM2<Conditional, Config>::getAffectedFactors(const list<Symbol>& keys) const {
|
||||
boost::shared_ptr<FactorGraph<NonlinearFactor<Config> > > allAffected(new FactorGraph<NonlinearFactor<Config> >);
|
||||
FactorGraph<NonlinearFactor<Config> > allAffected;
|
||||
list<int> indices;
|
||||
BOOST_FOREACH(const Symbol& key, keys) {
|
||||
const list<int> l = nonlinearFactors_.factors(key);
|
||||
|
|
@ -85,7 +85,7 @@ namespace gtsam {
|
|||
indices.sort();
|
||||
indices.unique();
|
||||
BOOST_FOREACH(int i, indices) {
|
||||
allAffected->push_back(nonlinearFactors_[i]);
|
||||
allAffected.push_back(nonlinearFactors_[i]);
|
||||
}
|
||||
return allAffected;
|
||||
}
|
||||
|
|
@ -94,17 +94,19 @@ namespace gtsam {
|
|||
// retrieve all factors that ONLY contain the affected variables
|
||||
// (note that the remaining stuff is summarized in the cached factors)
|
||||
template<class Conditional, class Config>
|
||||
FactorGraph<GaussianFactor> ISAM2<Conditional, Config>::relinearizeAffectedFactors(const list<Symbol>& affectedKeys) const {
|
||||
FactorGraph<GaussianFactor> ISAM2<Conditional, Config>::relinearizeAffectedFactors(const set<Symbol>& affectedKeys) const {
|
||||
|
||||
boost::shared_ptr<FactorGraph<NonlinearFactor<Config> > > candidates = getAffectedFactors(affectedKeys);
|
||||
list<Symbol> affectedKeysList; // todo: shouldn't have to convert back to list...
|
||||
affectedKeysList.insert(affectedKeysList.begin(), affectedKeys.begin(), affectedKeys.end());
|
||||
FactorGraph<NonlinearFactor<Config> > candidates = getAffectedFactors(affectedKeysList);
|
||||
|
||||
NonlinearFactorGraph<Config> nonlinearAffectedFactors;
|
||||
|
||||
typename FactorGraph<NonlinearFactor<Config> >::const_iterator it;
|
||||
for(it = candidates->begin(); it != candidates->end(); it++) {
|
||||
for(it = candidates.begin(); it != candidates.end(); it++) {
|
||||
bool inside = true;
|
||||
BOOST_FOREACH(const Symbol& key, (*it)->keys()) {
|
||||
if (find(affectedKeys.begin(), affectedKeys.end(), key) == affectedKeys.end()) {
|
||||
if (affectedKeys.find(key) == affectedKeys.end()) {
|
||||
inside = false;
|
||||
break;
|
||||
}
|
||||
|
|
@ -135,26 +137,32 @@ namespace gtsam {
|
|||
/* ************************************************************************* */
|
||||
template<class Conditional, class Config>
|
||||
void ISAM2<Conditional, Config>::update_internal(const NonlinearFactorGraph<Config>& newFactors,
|
||||
const Config& theta_new, Cliques& orphans, double wildfire_threshold, double relinearize_threshold) {
|
||||
const Config& newTheta, Cliques& orphans, double wildfire_threshold, double relinearize_threshold) {
|
||||
|
||||
// marked_ = nonlinearFactors_.keys(); // debug only ////////////
|
||||
|
||||
// todo - debug only
|
||||
// marked_ = nonlinearFactors_.keys();
|
||||
//// 1 - relinearize selected variables
|
||||
|
||||
theta_ = expmap(theta_, deltaMarked_);
|
||||
|
||||
//// 2 - Add new factors (for later relinearization)
|
||||
|
||||
//// 1 - Remember the new factors for later relinearization
|
||||
nonlinearFactors_.push_back(newFactors);
|
||||
|
||||
//// 2 - add in new information
|
||||
// add new variables
|
||||
theta_.insert(theta_new);
|
||||
//// 3 - Initialize new variables
|
||||
|
||||
theta_.insert(newTheta);
|
||||
thetaFuture_.insert(newTheta);
|
||||
|
||||
//// 4 - Mark affected variables as invalid
|
||||
|
||||
// todo - not in lyx yet: relin requires more than just removing the cliques corresponding to the variables!!!
|
||||
// It's about factors!!!
|
||||
|
||||
// basically calculate all the keys contained in the factors that contain any of the keys...
|
||||
// the goal is to relinearize all variables directly affected by new factors
|
||||
boost::shared_ptr<FactorGraph<NonlinearFactor<Config> > > allAffected = getAffectedFactors(marked_);
|
||||
marked_ = allAffected->keys();
|
||||
FactorGraph<NonlinearFactor<Config> > allAffected = getAffectedFactors(marked_);
|
||||
marked_ = allAffected.keys();
|
||||
|
||||
// merge keys of new factors with mask
|
||||
const list<Symbol> newKeys = newFactors.keys();
|
||||
|
|
@ -163,23 +171,27 @@ namespace gtsam {
|
|||
marked_.sort();
|
||||
marked_.unique();
|
||||
|
||||
//// 4 - removeTop invalidate all cliques involving marked variables
|
||||
//// 5 - removeTop invalidate all cliques involving marked variables
|
||||
|
||||
// remove affected factors
|
||||
BayesNet<GaussianConditional> affectedBayesNet;
|
||||
this->removeTop(marked_, affectedBayesNet, orphans);
|
||||
|
||||
//// 3 - find factors connected to affected variables
|
||||
//// 4 - linearize
|
||||
//// 6 - find factors connected to affected variables
|
||||
//// 7 - linearize
|
||||
|
||||
// ordering provides all keys in conditionals, there cannot be others because path to root included
|
||||
list<Symbol> affectedKeys = affectedBayesNet.ordering();
|
||||
set<Symbol> affectedKeys;
|
||||
list<Symbol> tmp = affectedBayesNet.ordering();
|
||||
affectedKeys.insert(tmp.begin(), tmp.end());
|
||||
|
||||
// todo - remerge in keys of new factors
|
||||
affectedKeys.insert(affectedKeys.begin(), newKeys.begin(), newKeys.end());
|
||||
affectedKeys.insert(newKeys.begin(), newKeys.end());
|
||||
#if 0 // no longer needed for set
|
||||
// eliminate duplicates
|
||||
affectedKeys.sort();
|
||||
affectedKeys.unique();
|
||||
#endif
|
||||
|
||||
FactorGraph<GaussianFactor> factors = relinearizeAffectedFactors(affectedKeys);
|
||||
|
||||
|
|
@ -187,7 +199,7 @@ namespace gtsam {
|
|||
FactorGraph<GaussianFactor> cachedBoundary = getCachedBoundaryFactors(orphans);
|
||||
factors.push_back(cachedBoundary);
|
||||
|
||||
//// 5 - eliminate and add orphans back in
|
||||
//// 8 - eliminate and add orphans back in
|
||||
|
||||
// create an ordering for the new and contaminated factors
|
||||
Ordering ordering = factors.getOrdering();
|
||||
|
|
@ -211,36 +223,35 @@ namespace gtsam {
|
|||
orphan->parent_ = parent; // set new parent!
|
||||
}
|
||||
|
||||
//// 6 - update solution
|
||||
//// 9 - update solution
|
||||
|
||||
VectorConfig delta = optimize2(*this, wildfire_threshold);
|
||||
delta_ = optimize2(*this, wildfire_threshold);
|
||||
|
||||
//// 7 - mark variables, if significant change
|
||||
//// 10 - mark variables, if significant change
|
||||
|
||||
marked_.clear();
|
||||
VectorConfig deltaMarked;
|
||||
for (VectorConfig::const_iterator it = delta.begin(); it!=delta.end(); it++) {
|
||||
deltaMarked_ = VectorConfig(); // clear
|
||||
for (VectorConfig::const_iterator it = delta_.begin(); it!=delta_.end(); it++) {
|
||||
Symbol key = it->first;
|
||||
Vector v = it->second;
|
||||
if (max(abs(v)) >= relinearize_threshold) {
|
||||
marked_.push_back(key);
|
||||
deltaMarked.insert(key, v);
|
||||
deltaMarked_.insert(key, v);
|
||||
}
|
||||
}
|
||||
|
||||
//// 8 - relinearize selected variables
|
||||
|
||||
theta_ = expmap(theta_, deltaMarked);
|
||||
// not part of the formal algorithm, but needed to allow initialization of new variables outside by the user
|
||||
thetaFuture_ = expmap(thetaFuture_, deltaMarked_);
|
||||
|
||||
}
|
||||
|
||||
template<class Conditional, class Config>
|
||||
void ISAM2<Conditional, Config>::update(
|
||||
const NonlinearFactorGraph<Config>& newFactors, const Config& config,
|
||||
const NonlinearFactorGraph<Config>& newFactors, const Config& newTheta,
|
||||
double wildfire_threshold, double relinearize_threshold) {
|
||||
|
||||
Cliques orphans;
|
||||
this->update_internal(newFactors, config, orphans, wildfire_threshold, relinearize_threshold);
|
||||
this->update_internal(newFactors, newTheta, orphans, wildfire_threshold, relinearize_threshold);
|
||||
|
||||
}
|
||||
|
||||
|
|
|
|||
20
cpp/ISAM2.h
20
cpp/ISAM2.h
|
|
@ -34,6 +34,7 @@ namespace gtsam {
|
|||
|
||||
// current linearization point
|
||||
Config theta_;
|
||||
Config thetaFuture_; // lin point of next iteration
|
||||
|
||||
// for keeping all original nonlinear factors
|
||||
NonlinearFactorGraph<Config> nonlinearFactors_;
|
||||
|
|
@ -41,6 +42,10 @@ namespace gtsam {
|
|||
// cached intermediate results for restarting computation in the middle
|
||||
CachedFactors cached_;
|
||||
|
||||
// the linear solution, an update to the estimate in theta
|
||||
VectorConfig delta_;
|
||||
VectorConfig deltaMarked_;
|
||||
|
||||
// variables that have been updated, requiring the corresponding factors to be relinearized
|
||||
std::list<Symbol> marked_;
|
||||
|
||||
|
|
@ -64,19 +69,24 @@ namespace gtsam {
|
|||
* ISAM2. (update_internal provides access to list of orphans for drawing purposes)
|
||||
*/
|
||||
void update_internal(const NonlinearFactorGraph<Config>& newFactors,
|
||||
const Config& config, Cliques& orphans,
|
||||
const Config& newTheta, Cliques& orphans,
|
||||
double wildfire_threshold, double relinearize_threshold);
|
||||
void update(const NonlinearFactorGraph<Config>& newFactors, const Config& config,
|
||||
void update(const NonlinearFactorGraph<Config>& newFactors, const Config& newTheta,
|
||||
double wildfire_threshold = 0., double relinearize_threshold = 0.);
|
||||
|
||||
const Config estimate() const {return theta_;}
|
||||
// needed to create initial estimates (note that this will be the linearization point in the next step!)
|
||||
const Config getLinearizationPoint() const {return thetaFuture_;}
|
||||
// estimate based on incomplete delta (threshold!)
|
||||
const Config calculateEstimate() const {return expmap(theta_, delta_);}
|
||||
// estimate based on full delta (note that this is based on the actual current linearization point)
|
||||
const Config calculateBestEstimate() const {return expmap(theta_, optimize2(*this, 0.));}
|
||||
|
||||
const std::list<Symbol>& getMarked() const { return marked_; }
|
||||
|
||||
private:
|
||||
|
||||
boost::shared_ptr<FactorGraph<NonlinearFactor<Config> > > getAffectedFactors(const std::list<Symbol>& keys) const;
|
||||
FactorGraph<GaussianFactor> relinearizeAffectedFactors(const std::list<Symbol>& affectedKeys) const;
|
||||
FactorGraph<NonlinearFactor<Config> > getAffectedFactors(const std::list<Symbol>& keys) const;
|
||||
FactorGraph<GaussianFactor> relinearizeAffectedFactors(const std::set<Symbol>& affectedKeys) const;
|
||||
FactorGraph<GaussianFactor> getCachedBoundaryFactors(Cliques& orphans);
|
||||
|
||||
}; // ISAM2
|
||||
|
|
|
|||
Loading…
Reference in New Issue