changed main algorithm to allow recovery of exact solution
parent
75e29dc015
commit
1d093e388d
|
|
@ -67,16 +67,16 @@ namespace gtsam {
|
||||||
/** Create a Bayes Tree from a nonlinear factor graph */
|
/** Create a Bayes Tree from a nonlinear factor graph */
|
||||||
template<class Conditional, class Config>
|
template<class Conditional, class Config>
|
||||||
ISAM2<Conditional, Config>::ISAM2(const NonlinearFactorGraph<Config>& nlfg, const Ordering& ordering, const Config& config)
|
ISAM2<Conditional, Config>::ISAM2(const NonlinearFactorGraph<Config>& nlfg, const Ordering& ordering, const Config& config)
|
||||||
: BayesTree<Conditional>(nlfg.linearize(config).eliminate(ordering)), nonlinearFactors_(nlfg), theta_(config) {
|
: BayesTree<Conditional>(nlfg.linearize(config).eliminate(ordering)), theta_(config), thetaFuture_(config), nonlinearFactors_(nlfg) {
|
||||||
// todo: repeats calculation above, just to set "cached"
|
// todo: repeats calculation above, just to set "cached"
|
||||||
_eliminate_const(nlfg.linearize(config), cached_, ordering);
|
_eliminate_const(nlfg.linearize(config), cached_, ordering);
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
template<class Conditional, class Config>
|
template<class Conditional, class Config>
|
||||||
boost::shared_ptr<FactorGraph<NonlinearFactor<Config> > >
|
FactorGraph<NonlinearFactor<Config> >
|
||||||
ISAM2<Conditional, Config>::getAffectedFactors(const list<Symbol>& keys) const {
|
ISAM2<Conditional, Config>::getAffectedFactors(const list<Symbol>& keys) const {
|
||||||
boost::shared_ptr<FactorGraph<NonlinearFactor<Config> > > allAffected(new FactorGraph<NonlinearFactor<Config> >);
|
FactorGraph<NonlinearFactor<Config> > allAffected;
|
||||||
list<int> indices;
|
list<int> indices;
|
||||||
BOOST_FOREACH(const Symbol& key, keys) {
|
BOOST_FOREACH(const Symbol& key, keys) {
|
||||||
const list<int> l = nonlinearFactors_.factors(key);
|
const list<int> l = nonlinearFactors_.factors(key);
|
||||||
|
|
@ -85,7 +85,7 @@ namespace gtsam {
|
||||||
indices.sort();
|
indices.sort();
|
||||||
indices.unique();
|
indices.unique();
|
||||||
BOOST_FOREACH(int i, indices) {
|
BOOST_FOREACH(int i, indices) {
|
||||||
allAffected->push_back(nonlinearFactors_[i]);
|
allAffected.push_back(nonlinearFactors_[i]);
|
||||||
}
|
}
|
||||||
return allAffected;
|
return allAffected;
|
||||||
}
|
}
|
||||||
|
|
@ -94,17 +94,19 @@ namespace gtsam {
|
||||||
// retrieve all factors that ONLY contain the affected variables
|
// retrieve all factors that ONLY contain the affected variables
|
||||||
// (note that the remaining stuff is summarized in the cached factors)
|
// (note that the remaining stuff is summarized in the cached factors)
|
||||||
template<class Conditional, class Config>
|
template<class Conditional, class Config>
|
||||||
FactorGraph<GaussianFactor> ISAM2<Conditional, Config>::relinearizeAffectedFactors(const list<Symbol>& affectedKeys) const {
|
FactorGraph<GaussianFactor> ISAM2<Conditional, Config>::relinearizeAffectedFactors(const set<Symbol>& affectedKeys) const {
|
||||||
|
|
||||||
boost::shared_ptr<FactorGraph<NonlinearFactor<Config> > > candidates = getAffectedFactors(affectedKeys);
|
list<Symbol> affectedKeysList; // todo: shouldn't have to convert back to list...
|
||||||
|
affectedKeysList.insert(affectedKeysList.begin(), affectedKeys.begin(), affectedKeys.end());
|
||||||
|
FactorGraph<NonlinearFactor<Config> > candidates = getAffectedFactors(affectedKeysList);
|
||||||
|
|
||||||
NonlinearFactorGraph<Config> nonlinearAffectedFactors;
|
NonlinearFactorGraph<Config> nonlinearAffectedFactors;
|
||||||
|
|
||||||
typename FactorGraph<NonlinearFactor<Config> >::const_iterator it;
|
typename FactorGraph<NonlinearFactor<Config> >::const_iterator it;
|
||||||
for(it = candidates->begin(); it != candidates->end(); it++) {
|
for(it = candidates.begin(); it != candidates.end(); it++) {
|
||||||
bool inside = true;
|
bool inside = true;
|
||||||
BOOST_FOREACH(const Symbol& key, (*it)->keys()) {
|
BOOST_FOREACH(const Symbol& key, (*it)->keys()) {
|
||||||
if (find(affectedKeys.begin(), affectedKeys.end(), key) == affectedKeys.end()) {
|
if (affectedKeys.find(key) == affectedKeys.end()) {
|
||||||
inside = false;
|
inside = false;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
@ -135,26 +137,32 @@ namespace gtsam {
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
template<class Conditional, class Config>
|
template<class Conditional, class Config>
|
||||||
void ISAM2<Conditional, Config>::update_internal(const NonlinearFactorGraph<Config>& newFactors,
|
void ISAM2<Conditional, Config>::update_internal(const NonlinearFactorGraph<Config>& newFactors,
|
||||||
const Config& theta_new, Cliques& orphans, double wildfire_threshold, double relinearize_threshold) {
|
const Config& newTheta, Cliques& orphans, double wildfire_threshold, double relinearize_threshold) {
|
||||||
|
|
||||||
|
// marked_ = nonlinearFactors_.keys(); // debug only ////////////
|
||||||
|
|
||||||
// todo - debug only
|
//// 1 - relinearize selected variables
|
||||||
// marked_ = nonlinearFactors_.keys();
|
|
||||||
|
theta_ = expmap(theta_, deltaMarked_);
|
||||||
|
|
||||||
|
//// 2 - Add new factors (for later relinearization)
|
||||||
|
|
||||||
//// 1 - Remember the new factors for later relinearization
|
|
||||||
nonlinearFactors_.push_back(newFactors);
|
nonlinearFactors_.push_back(newFactors);
|
||||||
|
|
||||||
//// 2 - add in new information
|
//// 3 - Initialize new variables
|
||||||
// add new variables
|
|
||||||
theta_.insert(theta_new);
|
theta_.insert(newTheta);
|
||||||
|
thetaFuture_.insert(newTheta);
|
||||||
|
|
||||||
|
//// 4 - Mark affected variables as invalid
|
||||||
|
|
||||||
// todo - not in lyx yet: relin requires more than just removing the cliques corresponding to the variables!!!
|
// todo - not in lyx yet: relin requires more than just removing the cliques corresponding to the variables!!!
|
||||||
// It's about factors!!!
|
// It's about factors!!!
|
||||||
|
|
||||||
// basically calculate all the keys contained in the factors that contain any of the keys...
|
// basically calculate all the keys contained in the factors that contain any of the keys...
|
||||||
// the goal is to relinearize all variables directly affected by new factors
|
// the goal is to relinearize all variables directly affected by new factors
|
||||||
boost::shared_ptr<FactorGraph<NonlinearFactor<Config> > > allAffected = getAffectedFactors(marked_);
|
FactorGraph<NonlinearFactor<Config> > allAffected = getAffectedFactors(marked_);
|
||||||
marked_ = allAffected->keys();
|
marked_ = allAffected.keys();
|
||||||
|
|
||||||
// merge keys of new factors with mask
|
// merge keys of new factors with mask
|
||||||
const list<Symbol> newKeys = newFactors.keys();
|
const list<Symbol> newKeys = newFactors.keys();
|
||||||
|
|
@ -163,23 +171,27 @@ namespace gtsam {
|
||||||
marked_.sort();
|
marked_.sort();
|
||||||
marked_.unique();
|
marked_.unique();
|
||||||
|
|
||||||
//// 4 - removeTop invalidate all cliques involving marked variables
|
//// 5 - removeTop invalidate all cliques involving marked variables
|
||||||
|
|
||||||
// remove affected factors
|
// remove affected factors
|
||||||
BayesNet<GaussianConditional> affectedBayesNet;
|
BayesNet<GaussianConditional> affectedBayesNet;
|
||||||
this->removeTop(marked_, affectedBayesNet, orphans);
|
this->removeTop(marked_, affectedBayesNet, orphans);
|
||||||
|
|
||||||
//// 3 - find factors connected to affected variables
|
//// 6 - find factors connected to affected variables
|
||||||
//// 4 - linearize
|
//// 7 - linearize
|
||||||
|
|
||||||
// ordering provides all keys in conditionals, there cannot be others because path to root included
|
// ordering provides all keys in conditionals, there cannot be others because path to root included
|
||||||
list<Symbol> affectedKeys = affectedBayesNet.ordering();
|
set<Symbol> affectedKeys;
|
||||||
|
list<Symbol> tmp = affectedBayesNet.ordering();
|
||||||
|
affectedKeys.insert(tmp.begin(), tmp.end());
|
||||||
|
|
||||||
// todo - remerge in keys of new factors
|
// todo - remerge in keys of new factors
|
||||||
affectedKeys.insert(affectedKeys.begin(), newKeys.begin(), newKeys.end());
|
affectedKeys.insert(newKeys.begin(), newKeys.end());
|
||||||
|
#if 0 // no longer needed for set
|
||||||
// eliminate duplicates
|
// eliminate duplicates
|
||||||
affectedKeys.sort();
|
affectedKeys.sort();
|
||||||
affectedKeys.unique();
|
affectedKeys.unique();
|
||||||
|
#endif
|
||||||
|
|
||||||
FactorGraph<GaussianFactor> factors = relinearizeAffectedFactors(affectedKeys);
|
FactorGraph<GaussianFactor> factors = relinearizeAffectedFactors(affectedKeys);
|
||||||
|
|
||||||
|
|
@ -187,7 +199,7 @@ namespace gtsam {
|
||||||
FactorGraph<GaussianFactor> cachedBoundary = getCachedBoundaryFactors(orphans);
|
FactorGraph<GaussianFactor> cachedBoundary = getCachedBoundaryFactors(orphans);
|
||||||
factors.push_back(cachedBoundary);
|
factors.push_back(cachedBoundary);
|
||||||
|
|
||||||
//// 5 - eliminate and add orphans back in
|
//// 8 - eliminate and add orphans back in
|
||||||
|
|
||||||
// create an ordering for the new and contaminated factors
|
// create an ordering for the new and contaminated factors
|
||||||
Ordering ordering = factors.getOrdering();
|
Ordering ordering = factors.getOrdering();
|
||||||
|
|
@ -211,36 +223,35 @@ namespace gtsam {
|
||||||
orphan->parent_ = parent; // set new parent!
|
orphan->parent_ = parent; // set new parent!
|
||||||
}
|
}
|
||||||
|
|
||||||
//// 6 - update solution
|
//// 9 - update solution
|
||||||
|
|
||||||
VectorConfig delta = optimize2(*this, wildfire_threshold);
|
delta_ = optimize2(*this, wildfire_threshold);
|
||||||
|
|
||||||
//// 7 - mark variables, if significant change
|
//// 10 - mark variables, if significant change
|
||||||
|
|
||||||
marked_.clear();
|
marked_.clear();
|
||||||
VectorConfig deltaMarked;
|
deltaMarked_ = VectorConfig(); // clear
|
||||||
for (VectorConfig::const_iterator it = delta.begin(); it!=delta.end(); it++) {
|
for (VectorConfig::const_iterator it = delta_.begin(); it!=delta_.end(); it++) {
|
||||||
Symbol key = it->first;
|
Symbol key = it->first;
|
||||||
Vector v = it->second;
|
Vector v = it->second;
|
||||||
if (max(abs(v)) >= relinearize_threshold) {
|
if (max(abs(v)) >= relinearize_threshold) {
|
||||||
marked_.push_back(key);
|
marked_.push_back(key);
|
||||||
deltaMarked.insert(key, v);
|
deltaMarked_.insert(key, v);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
//// 8 - relinearize selected variables
|
// not part of the formal algorithm, but needed to allow initialization of new variables outside by the user
|
||||||
|
thetaFuture_ = expmap(thetaFuture_, deltaMarked_);
|
||||||
theta_ = expmap(theta_, deltaMarked);
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class Conditional, class Config>
|
template<class Conditional, class Config>
|
||||||
void ISAM2<Conditional, Config>::update(
|
void ISAM2<Conditional, Config>::update(
|
||||||
const NonlinearFactorGraph<Config>& newFactors, const Config& config,
|
const NonlinearFactorGraph<Config>& newFactors, const Config& newTheta,
|
||||||
double wildfire_threshold, double relinearize_threshold) {
|
double wildfire_threshold, double relinearize_threshold) {
|
||||||
|
|
||||||
Cliques orphans;
|
Cliques orphans;
|
||||||
this->update_internal(newFactors, config, orphans, wildfire_threshold, relinearize_threshold);
|
this->update_internal(newFactors, newTheta, orphans, wildfire_threshold, relinearize_threshold);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
||||||
20
cpp/ISAM2.h
20
cpp/ISAM2.h
|
|
@ -34,6 +34,7 @@ namespace gtsam {
|
||||||
|
|
||||||
// current linearization point
|
// current linearization point
|
||||||
Config theta_;
|
Config theta_;
|
||||||
|
Config thetaFuture_; // lin point of next iteration
|
||||||
|
|
||||||
// for keeping all original nonlinear factors
|
// for keeping all original nonlinear factors
|
||||||
NonlinearFactorGraph<Config> nonlinearFactors_;
|
NonlinearFactorGraph<Config> nonlinearFactors_;
|
||||||
|
|
@ -41,6 +42,10 @@ namespace gtsam {
|
||||||
// cached intermediate results for restarting computation in the middle
|
// cached intermediate results for restarting computation in the middle
|
||||||
CachedFactors cached_;
|
CachedFactors cached_;
|
||||||
|
|
||||||
|
// the linear solution, an update to the estimate in theta
|
||||||
|
VectorConfig delta_;
|
||||||
|
VectorConfig deltaMarked_;
|
||||||
|
|
||||||
// variables that have been updated, requiring the corresponding factors to be relinearized
|
// variables that have been updated, requiring the corresponding factors to be relinearized
|
||||||
std::list<Symbol> marked_;
|
std::list<Symbol> marked_;
|
||||||
|
|
||||||
|
|
@ -64,19 +69,24 @@ namespace gtsam {
|
||||||
* ISAM2. (update_internal provides access to list of orphans for drawing purposes)
|
* ISAM2. (update_internal provides access to list of orphans for drawing purposes)
|
||||||
*/
|
*/
|
||||||
void update_internal(const NonlinearFactorGraph<Config>& newFactors,
|
void update_internal(const NonlinearFactorGraph<Config>& newFactors,
|
||||||
const Config& config, Cliques& orphans,
|
const Config& newTheta, Cliques& orphans,
|
||||||
double wildfire_threshold, double relinearize_threshold);
|
double wildfire_threshold, double relinearize_threshold);
|
||||||
void update(const NonlinearFactorGraph<Config>& newFactors, const Config& config,
|
void update(const NonlinearFactorGraph<Config>& newFactors, const Config& newTheta,
|
||||||
double wildfire_threshold = 0., double relinearize_threshold = 0.);
|
double wildfire_threshold = 0., double relinearize_threshold = 0.);
|
||||||
|
|
||||||
const Config estimate() const {return theta_;}
|
// needed to create initial estimates (note that this will be the linearization point in the next step!)
|
||||||
|
const Config getLinearizationPoint() const {return thetaFuture_;}
|
||||||
|
// estimate based on incomplete delta (threshold!)
|
||||||
|
const Config calculateEstimate() const {return expmap(theta_, delta_);}
|
||||||
|
// estimate based on full delta (note that this is based on the actual current linearization point)
|
||||||
|
const Config calculateBestEstimate() const {return expmap(theta_, optimize2(*this, 0.));}
|
||||||
|
|
||||||
const std::list<Symbol>& getMarked() const { return marked_; }
|
const std::list<Symbol>& getMarked() const { return marked_; }
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
|
||||||
boost::shared_ptr<FactorGraph<NonlinearFactor<Config> > > getAffectedFactors(const std::list<Symbol>& keys) const;
|
FactorGraph<NonlinearFactor<Config> > getAffectedFactors(const std::list<Symbol>& keys) const;
|
||||||
FactorGraph<GaussianFactor> relinearizeAffectedFactors(const std::list<Symbol>& affectedKeys) const;
|
FactorGraph<GaussianFactor> relinearizeAffectedFactors(const std::set<Symbol>& affectedKeys) const;
|
||||||
FactorGraph<GaussianFactor> getCachedBoundaryFactors(Cliques& orphans);
|
FactorGraph<GaussianFactor> getCachedBoundaryFactors(Cliques& orphans);
|
||||||
|
|
||||||
}; // ISAM2
|
}; // ISAM2
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue