Even more modular
parent
8148b78af6
commit
1bf76be62b
|
@ -1,39 +1,25 @@
|
||||||
# gtsam_plotly_modular.py
|
# gtsam_plotly_modular_v2.py
|
||||||
|
from typing import Any, Callable, Dict, List, Optional, Tuple
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import plotly.graph_objects as go
|
import plotly.graph_objects as go
|
||||||
from tqdm.notebook import tqdm # Progress bar
|
from tqdm.notebook import tqdm
|
||||||
from typing import List, Optional, Tuple, Dict, Any
|
|
||||||
|
|
||||||
import gtsam
|
import gtsam
|
||||||
|
|
||||||
# --- Ellipse Calculation Helpers (Mostly unchanged) ---
|
# --- Core Ellipse Calculations ---
|
||||||
|
|
||||||
|
|
||||||
def ellipse_path(
|
def ellipse_path(
|
||||||
cx: float, cy: float, sizex: float, sizey: float, angle: float, N: int = 60
|
cx: float, cy: float, sizex: float, sizey: float, angle: float, N: int = 60
|
||||||
) -> str:
|
) -> str:
|
||||||
"""
|
"""Generates SVG path string for a rotated ellipse."""
|
||||||
Generates an SVG path string for an ellipse.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
cx: Center x-coordinate.
|
|
||||||
cy: Center y-coordinate.
|
|
||||||
sizex: Full width of the ellipse along its major axis.
|
|
||||||
sizey: Full height of the ellipse along its minor axis.
|
|
||||||
angle: Rotation angle in degrees.
|
|
||||||
N: Number of points to approximate the ellipse.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
SVG path string.
|
|
||||||
"""
|
|
||||||
angle_rad = np.radians(angle)
|
angle_rad = np.radians(angle)
|
||||||
t = np.linspace(0, 2 * np.pi, N)
|
t = np.linspace(0, 2 * np.pi, N)
|
||||||
x = (sizex / 2) * np.cos(t)
|
x_unit = (sizex / 2) * np.cos(t)
|
||||||
y = (sizey / 2) * np.sin(t)
|
y_unit = (sizey / 2) * np.sin(t)
|
||||||
|
x_rot = cx + x_unit * np.cos(angle_rad) - y_unit * np.sin(angle_rad)
|
||||||
x_rot = cx + x * np.cos(angle_rad) - y * np.sin(angle_rad)
|
y_rot = cy + x_unit * np.sin(angle_rad) + y_unit * np.cos(angle_rad)
|
||||||
y_rot = cy + x * np.sin(angle_rad) + y * np.cos(angle_rad)
|
|
||||||
|
|
||||||
path = (
|
path = (
|
||||||
f"M {x_rot[0]},{y_rot[0]} "
|
f"M {x_rot[0]},{y_rot[0]} "
|
||||||
+ " ".join(f"L{x_},{y_}" for x_, y_ in zip(x_rot[1:], y_rot[1:]))
|
+ " ".join(f"L{x_},{y_}" for x_, y_ in zip(x_rot[1:], y_rot[1:]))
|
||||||
|
@ -45,125 +31,150 @@ def ellipse_path(
|
||||||
def gtsam_cov_to_plotly_ellipse(
|
def gtsam_cov_to_plotly_ellipse(
|
||||||
cov_matrix: np.ndarray, scale: float = 2.0
|
cov_matrix: np.ndarray, scale: float = 2.0
|
||||||
) -> Tuple[float, float, float]:
|
) -> Tuple[float, float, float]:
|
||||||
"""
|
"""Calculates ellipse angle (deg), width, height from 2x2 covariance."""
|
||||||
Calculates ellipse parameters (angle, width, height) from a 2x2 covariance matrix.
|
cov = cov_matrix[:2, :2] + np.eye(2) * 1e-9 # Ensure positive definite
|
||||||
|
|
||||||
Args:
|
|
||||||
cov_matrix: The 2x2 covariance matrix (or larger, only top-left 2x2 used).
|
|
||||||
scale: Scaling factor for the ellipse size (e.g., 2.0 for 2-sigma).
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Tuple containing (angle_degrees, width, height).
|
|
||||||
"""
|
|
||||||
# Ensure positive definite - add small epsilon if needed
|
|
||||||
cov = cov_matrix[:2, :2] + np.eye(2) * 1e-9
|
|
||||||
try:
|
try:
|
||||||
eigvals, eigvecs = np.linalg.eigh(cov)
|
eigvals, eigvecs = np.linalg.eigh(cov)
|
||||||
# Ensure eigenvalues are positive for sqrt
|
eigvals = np.maximum(eigvals, 1e-9) # Ensure positive eigenvalues
|
||||||
eigvals = np.maximum(eigvals, 1e-9)
|
|
||||||
except np.linalg.LinAlgError:
|
except np.linalg.LinAlgError:
|
||||||
# print("Warning: Covariance matrix SVD failed, using default ellipse.") # Optional warning
|
return 0, 0.1 * scale, 0.1 * scale # Default on failure
|
||||||
return 0, 0.1 * scale, 0.1 * scale # Default small ellipse
|
|
||||||
|
|
||||||
# Width/Height are 2*scale*sqrt(eigenvalue) (using full width/height)
|
width = 2 * scale * np.sqrt(eigvals[1]) # Major axis (largest eigenvalue)
|
||||||
width = (
|
height = 2 * scale * np.sqrt(eigvals[0]) # Minor axis (smallest eigenvalue)
|
||||||
2 * scale * np.sqrt(eigvals[1])
|
angle_rad = np.arctan2(
|
||||||
) # Major axis corresponds to largest eigenvalue
|
eigvecs[1, 1], eigvecs[0, 1]
|
||||||
height = (
|
) # Angle of major axis eigenvector
|
||||||
2 * scale * np.sqrt(eigvals[0])
|
|
||||||
) # Minor axis corresponds to smallest eigenvalue
|
|
||||||
|
|
||||||
# Angle of the major axis (eigenvector corresponding to largest eigenvalue eigvals[1])
|
|
||||||
angle_rad = np.arctan2(eigvecs[1, 1], eigvecs[0, 1])
|
|
||||||
angle_deg = np.degrees(angle_rad)
|
angle_deg = np.degrees(angle_rad)
|
||||||
|
|
||||||
return angle_deg, width, height
|
return angle_deg, width, height
|
||||||
|
|
||||||
|
|
||||||
# --- Plotting Element Creation Helpers ---
|
# --- Plotly Element Generators ---
|
||||||
|
|
||||||
|
|
||||||
def _add_ground_truth_traces(
|
def create_gt_landmarks_trace(landmarks_gt_array: np.ndarray) -> Optional[go.Scatter]:
|
||||||
fig: go.Figure, landmarks_gt_array: np.ndarray, poses_gt: List[gtsam.Pose2]
|
"""Creates scatter trace for ground truth landmarks."""
|
||||||
) -> None:
|
if landmarks_gt_array is None or landmarks_gt_array.size == 0:
|
||||||
"""Adds static ground truth landmark and path traces to the figure."""
|
return None
|
||||||
# Ground Truth Landmarks
|
return go.Scatter(
|
||||||
if landmarks_gt_array is not None and landmarks_gt_array.size > 0:
|
|
||||||
fig.add_trace(
|
|
||||||
go.Scatter(
|
|
||||||
x=landmarks_gt_array[0, :],
|
x=landmarks_gt_array[0, :],
|
||||||
y=landmarks_gt_array[1, :],
|
y=landmarks_gt_array[1, :],
|
||||||
mode="markers",
|
mode="markers",
|
||||||
marker=dict(color="black", size=8, symbol="star"),
|
marker=dict(color="black", size=8, symbol="star"),
|
||||||
name="Landmarks GT",
|
name="Landmarks GT",
|
||||||
)
|
)
|
||||||
)
|
|
||||||
|
|
||||||
# Ground Truth Path
|
|
||||||
if poses_gt:
|
def create_gt_path_trace(poses_gt: List[gtsam.Pose2]) -> Optional[go.Scatter]:
|
||||||
|
"""Creates line trace for ground truth path."""
|
||||||
|
if not poses_gt:
|
||||||
|
return None
|
||||||
gt_path_x = [p.x() for p in poses_gt]
|
gt_path_x = [p.x() for p in poses_gt]
|
||||||
gt_path_y = [p.y() for p in poses_gt]
|
gt_path_y = [p.y() for p in poses_gt]
|
||||||
fig.add_trace(
|
return go.Scatter(
|
||||||
go.Scatter(
|
|
||||||
x=gt_path_x,
|
x=gt_path_x,
|
||||||
y=gt_path_y,
|
y=gt_path_y,
|
||||||
mode="lines",
|
mode="lines",
|
||||||
line=dict(color="gray", width=1, dash="dash"),
|
line=dict(color="gray", width=1, dash="dash"),
|
||||||
name="Path GT",
|
name="Path GT",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def create_est_path_trace(
|
||||||
|
est_path_x: List[float], est_path_y: List[float]
|
||||||
|
) -> go.Scatter:
|
||||||
|
"""Creates scatter/line trace for the estimated path up to current step."""
|
||||||
|
return go.Scatter(
|
||||||
|
x=est_path_x,
|
||||||
|
y=est_path_y,
|
||||||
|
mode="lines+markers",
|
||||||
|
line=dict(color="red", width=2),
|
||||||
|
marker=dict(size=4, color="red"),
|
||||||
|
name="Path Est", # This name applies to the trace in the specific frame
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def create_est_landmarks_trace(
|
||||||
|
est_landmarks_x: List[float], est_landmarks_y: List[float]
|
||||||
|
) -> Optional[go.Scatter]:
|
||||||
|
"""Creates scatter trace for currently estimated landmarks."""
|
||||||
|
if not est_landmarks_x:
|
||||||
|
return None
|
||||||
|
return go.Scatter(
|
||||||
|
x=est_landmarks_x,
|
||||||
|
y=est_landmarks_y,
|
||||||
|
mode="markers",
|
||||||
|
marker=dict(color="blue", size=6, symbol="x"),
|
||||||
|
name="Landmarks Est", # Applies to landmarks in the specific frame
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def _create_ellipse_shape_dict(
|
def _create_ellipse_shape_dict(
|
||||||
cx: float,
|
cx, cy, angle, width, height, fillcolor, line_color, name_suffix
|
||||||
cy: float,
|
|
||||||
angle: float,
|
|
||||||
width: float,
|
|
||||||
height: float,
|
|
||||||
fillcolor: str,
|
|
||||||
line_color: str,
|
|
||||||
name: str,
|
|
||||||
) -> Dict[str, Any]:
|
) -> Dict[str, Any]:
|
||||||
"""Creates the dictionary required for a Plotly ellipse shape."""
|
"""Helper to create the dictionary for a Plotly ellipse shape."""
|
||||||
return dict(
|
return dict(
|
||||||
type="path",
|
type="path",
|
||||||
path=ellipse_path(cx=cx, cy=cy, sizex=width, sizey=height, angle=angle, N=60),
|
path=ellipse_path(cx=cx, cy=cy, sizex=width, sizey=height, angle=angle),
|
||||||
xref="x",
|
xref="x",
|
||||||
yref="y",
|
yref="y",
|
||||||
fillcolor=fillcolor,
|
fillcolor=fillcolor,
|
||||||
line_color=line_color,
|
line_color=line_color,
|
||||||
name=name, # Note: name isn't directly displayed for shapes, but good for metadata
|
# name=f"{name_suffix} Cov", # Name isn't really used by Plotly for shapes
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def _create_single_frame_data(
|
def create_pose_ellipse_shape(
|
||||||
|
pose_mean_xy: np.ndarray, pose_cov: np.ndarray, k: int, scale: float
|
||||||
|
) -> Dict[str, Any]:
|
||||||
|
"""Creates shape dictionary for a pose covariance ellipse."""
|
||||||
|
angle, width, height = gtsam_cov_to_plotly_ellipse(pose_cov, scale)
|
||||||
|
return _create_ellipse_shape_dict(
|
||||||
|
cx=pose_mean_xy[0],
|
||||||
|
cy=pose_mean_xy[1],
|
||||||
|
angle=angle,
|
||||||
|
width=width,
|
||||||
|
height=height,
|
||||||
|
fillcolor="rgba(255,0,255,0.2)",
|
||||||
|
line_color="rgba(255,0,255,0.5)",
|
||||||
|
name_suffix=f"Pose {k}",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def create_landmark_ellipse_shape(
|
||||||
|
lm_mean_xy: np.ndarray, lm_cov: np.ndarray, lm_index: int, scale: float
|
||||||
|
) -> Dict[str, Any]:
|
||||||
|
"""Creates shape dictionary for a landmark covariance ellipse."""
|
||||||
|
angle, width, height = gtsam_cov_to_plotly_ellipse(lm_cov, scale)
|
||||||
|
return _create_ellipse_shape_dict(
|
||||||
|
cx=lm_mean_xy[0],
|
||||||
|
cy=lm_mean_xy[1],
|
||||||
|
angle=angle,
|
||||||
|
width=width,
|
||||||
|
height=height,
|
||||||
|
fillcolor="rgba(0,0,255,0.1)",
|
||||||
|
line_color="rgba(0,0,255,0.3)",
|
||||||
|
name_suffix=f"LM {lm_index}",
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# --- Frame Content Generation ---
|
||||||
|
|
||||||
|
|
||||||
|
def generate_frame_content(
|
||||||
k: int,
|
k: int,
|
||||||
step_results: gtsam.Values,
|
step_results: gtsam.Values,
|
||||||
step_marginals: Optional[gtsam.Marginals],
|
step_marginals: Optional[gtsam.Marginals],
|
||||||
X: callable,
|
X: Callable[[int], int],
|
||||||
L: callable,
|
L: Callable[[int], int],
|
||||||
|
max_landmark_index: int, # Need to know the potential range of landmarks
|
||||||
ellipse_scale: float = 2.0,
|
ellipse_scale: float = 2.0,
|
||||||
verbose: bool = False,
|
verbose: bool = False,
|
||||||
) -> Tuple[List[go.Scatter], List[Dict[str, Any]]]:
|
) -> Tuple[List[go.Scatter], List[Dict[str, Any]]]:
|
||||||
"""
|
"""Generates all dynamic traces and shapes for a single animation frame `k`."""
|
||||||
Creates the traces and shapes for a single animation frame.
|
frame_traces: List[go.Scatter] = []
|
||||||
|
frame_shapes: List[Dict[str, Any]] = []
|
||||||
|
|
||||||
Args:
|
# 1. Gather Estimated Path Data
|
||||||
k: The current step index.
|
|
||||||
step_results: gtsam.Values for this step.
|
|
||||||
step_marginals: gtsam.Marginals for this step (or None).
|
|
||||||
X: Symbol function for poses.
|
|
||||||
L: Symbol function for landmarks.
|
|
||||||
ellipse_scale: Scaling factor for covariance ellipses.
|
|
||||||
verbose: If True, print warnings for covariance errors.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
A tuple containing (list_of_traces, list_of_shapes).
|
|
||||||
"""
|
|
||||||
traces = []
|
|
||||||
shapes = []
|
|
||||||
|
|
||||||
# 1. Estimated Path up to step k
|
|
||||||
est_path_x = []
|
est_path_x = []
|
||||||
est_path_y = []
|
est_path_y = []
|
||||||
for i in range(k + 1):
|
for i in range(k + 1):
|
||||||
|
@ -172,115 +183,70 @@ def _create_single_frame_data(
|
||||||
pose = step_results.atPose2(pose_key)
|
pose = step_results.atPose2(pose_key)
|
||||||
est_path_x.append(pose.x())
|
est_path_x.append(pose.x())
|
||||||
est_path_y.append(pose.y())
|
est_path_y.append(pose.y())
|
||||||
|
frame_traces.append(create_est_path_trace(est_path_x, est_path_y))
|
||||||
|
|
||||||
traces.append(
|
# 2. Gather Estimated Landmark Data
|
||||||
go.Scatter(
|
|
||||||
x=est_path_x,
|
|
||||||
y=est_path_y,
|
|
||||||
mode="lines+markers",
|
|
||||||
line=dict(color="red", width=2),
|
|
||||||
marker=dict(size=4, color="red"),
|
|
||||||
name="Path Est", # Legend entry for the whole path
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
# 2. Estimated Landmarks known at step k
|
|
||||||
est_landmarks_x = []
|
est_landmarks_x = []
|
||||||
est_landmarks_y = []
|
est_landmarks_y = []
|
||||||
landmark_keys_in_frame = []
|
landmark_keys_in_frame = []
|
||||||
all_keys = step_results.keys()
|
# Check all potential landmark keys up to max_landmark_index
|
||||||
for key_val in all_keys:
|
for j in range(max_landmark_index + 1):
|
||||||
symbol = gtsam.Symbol(key_val)
|
lm_key = L(j)
|
||||||
if symbol.chr() == ord("l"): # Check if it's a landmark symbol
|
if step_results.exists(lm_key):
|
||||||
# Check existence again (though keys() implies existence)
|
lm_point = step_results.atPoint2(lm_key)
|
||||||
if step_results.exists(key_val):
|
|
||||||
lm_point = step_results.atPoint2(key_val)
|
|
||||||
est_landmarks_x.append(lm_point[0])
|
est_landmarks_x.append(lm_point[0])
|
||||||
est_landmarks_y.append(lm_point[1])
|
est_landmarks_y.append(lm_point[1])
|
||||||
landmark_keys_in_frame.append(key_val)
|
landmark_keys_in_frame.append(lm_key)
|
||||||
|
|
||||||
if est_landmarks_x:
|
lm_trace = create_est_landmarks_trace(est_landmarks_x, est_landmarks_y)
|
||||||
traces.append(
|
if lm_trace:
|
||||||
go.Scatter(
|
frame_traces.append(lm_trace)
|
||||||
x=est_landmarks_x,
|
|
||||||
y=est_landmarks_y,
|
|
||||||
mode="markers",
|
|
||||||
marker=dict(color="blue", size=6, symbol="x"),
|
|
||||||
name="Landmarks Est", # Legend entry for all estimated landmarks
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
# 3. Covariance Ellipses (if marginals available)
|
# 3. Generate Covariance Ellipses (if marginals available)
|
||||||
if step_marginals is not None:
|
if step_marginals is not None:
|
||||||
# Current Pose Covariance Ellipse
|
# Pose ellipse
|
||||||
current_pose_key = X(k)
|
current_pose_key = X(k)
|
||||||
if step_results.exists(current_pose_key):
|
if step_results.exists(current_pose_key):
|
||||||
try:
|
try:
|
||||||
pose_cov = step_marginals.marginalCovariance(current_pose_key)
|
pose_cov = step_marginals.marginalCovariance(current_pose_key)
|
||||||
pose_mean = step_results.atPose2(current_pose_key).translation()
|
pose_mean = step_results.atPose2(current_pose_key).translation()
|
||||||
angle, width, height = gtsam_cov_to_plotly_ellipse(
|
frame_shapes.append(
|
||||||
pose_cov, scale=ellipse_scale
|
create_pose_ellipse_shape(pose_mean, pose_cov, k, ellipse_scale)
|
||||||
)
|
|
||||||
shapes.append(
|
|
||||||
_create_ellipse_shape_dict(
|
|
||||||
cx=pose_mean[0],
|
|
||||||
cy=pose_mean[1],
|
|
||||||
angle=angle,
|
|
||||||
width=width,
|
|
||||||
height=height,
|
|
||||||
fillcolor="rgba(255,0,255,0.2)",
|
|
||||||
line_color="rgba(255,0,255,0.5)",
|
|
||||||
name=f"Pose {k} Cov",
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
if verbose:
|
if verbose:
|
||||||
print(
|
print(f"Warn: Pose {k} cov err @ step {k}: {e}")
|
||||||
f"Warning: Failed getting pose {k} cov ellipse at step {k}: {e}"
|
|
||||||
)
|
|
||||||
|
|
||||||
# Landmark Covariance Ellipses
|
# Landmark ellipses
|
||||||
for lm_key in landmark_keys_in_frame:
|
for lm_key in landmark_keys_in_frame:
|
||||||
try:
|
try:
|
||||||
lm_cov = step_marginals.marginalCovariance(lm_key)
|
lm_cov = step_marginals.marginalCovariance(lm_key)
|
||||||
lm_mean = step_results.atPoint2(lm_key)
|
lm_mean = step_results.atPoint2(lm_key)
|
||||||
angle, width, height = gtsam_cov_to_plotly_ellipse(
|
lm_index = gtsam.Symbol(lm_key).index()
|
||||||
lm_cov, scale=ellipse_scale
|
frame_shapes.append(
|
||||||
)
|
create_landmark_ellipse_shape(
|
||||||
symbol = gtsam.Symbol(lm_key)
|
lm_mean, lm_cov, lm_index, ellipse_scale
|
||||||
shapes.append(
|
|
||||||
_create_ellipse_shape_dict(
|
|
||||||
cx=lm_mean[0],
|
|
||||||
cy=lm_mean[1],
|
|
||||||
angle=angle,
|
|
||||||
width=width,
|
|
||||||
height=height,
|
|
||||||
fillcolor="rgba(0,0,255,0.1)",
|
|
||||||
line_color="rgba(0,0,255,0.3)",
|
|
||||||
name=f"LM {symbol.index()} Cov",
|
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
symbol = gtsam.Symbol(lm_key)
|
lm_index = gtsam.Symbol(lm_key).index()
|
||||||
if verbose:
|
if verbose:
|
||||||
print(
|
print(f"Warn: LM {lm_index} cov err @ step {k}: {e}")
|
||||||
f"Warning: Failed getting landmark {symbol.index()} cov ellipse at step {k}: {e}"
|
|
||||||
)
|
|
||||||
|
|
||||||
return traces, shapes
|
return frame_traces, frame_shapes
|
||||||
|
|
||||||
|
|
||||||
def _configure_figure_layout(
|
# --- Figure Configuration ---
|
||||||
|
|
||||||
|
|
||||||
|
def configure_figure_layout(
|
||||||
fig: go.Figure,
|
fig: go.Figure,
|
||||||
num_steps: int,
|
num_steps: int,
|
||||||
world_size: float,
|
world_size: float,
|
||||||
initial_shapes: List[Dict[str, Any]],
|
initial_shapes: List[Dict[str, Any]],
|
||||||
) -> None:
|
) -> None:
|
||||||
"""Configures the Plotly figure's layout, axes, slider, and buttons."""
|
"""Configures Plotly figure layout, axes, slider, buttons."""
|
||||||
|
|
||||||
steps = list(range(num_steps + 1))
|
steps = list(range(num_steps + 1))
|
||||||
|
|
||||||
# Slider
|
|
||||||
sliders = [
|
sliders = [
|
||||||
dict(
|
dict(
|
||||||
active=0,
|
active=0,
|
||||||
|
@ -291,12 +257,10 @@ def _configure_figure_layout(
|
||||||
label=str(k),
|
label=str(k),
|
||||||
method="animate",
|
method="animate",
|
||||||
args=[
|
args=[
|
||||||
[str(k)], # Frame name
|
[str(k)],
|
||||||
dict(
|
dict(
|
||||||
mode="immediate",
|
mode="immediate",
|
||||||
frame=dict(
|
frame=dict(duration=100, redraw=True),
|
||||||
duration=100, redraw=True
|
|
||||||
), # Redraw needed for shapes
|
|
||||||
transition=dict(duration=0),
|
transition=dict(duration=0),
|
||||||
),
|
),
|
||||||
],
|
],
|
||||||
|
@ -305,18 +269,22 @@ def _configure_figure_layout(
|
||||||
],
|
],
|
||||||
)
|
)
|
||||||
]
|
]
|
||||||
|
|
||||||
# Buttons
|
|
||||||
updatemenus = [
|
updatemenus = [
|
||||||
dict(
|
dict(
|
||||||
type="buttons",
|
type="buttons",
|
||||||
showactive=False,
|
showactive=False,
|
||||||
|
direction="left",
|
||||||
|
pad={"r": 10, "t": 87},
|
||||||
|
x=0.1,
|
||||||
|
xanchor="right",
|
||||||
|
y=0,
|
||||||
|
yanchor="top",
|
||||||
buttons=[
|
buttons=[
|
||||||
dict(
|
dict(
|
||||||
label="Play",
|
label="Play",
|
||||||
method="animate",
|
method="animate",
|
||||||
args=[
|
args=[
|
||||||
None, # Animate all frames
|
None,
|
||||||
dict(
|
dict(
|
||||||
mode="immediate",
|
mode="immediate",
|
||||||
frame=dict(duration=100, redraw=True),
|
frame=dict(duration=100, redraw=True),
|
||||||
|
@ -329,7 +297,7 @@ def _configure_figure_layout(
|
||||||
label="Pause",
|
label="Pause",
|
||||||
method="animate",
|
method="animate",
|
||||||
args=[
|
args=[
|
||||||
[None], # Stop animation
|
[None],
|
||||||
dict(
|
dict(
|
||||||
mode="immediate",
|
mode="immediate",
|
||||||
frame=dict(duration=0, redraw=False),
|
frame=dict(duration=0, redraw=False),
|
||||||
|
@ -338,25 +306,15 @@ def _configure_figure_layout(
|
||||||
],
|
],
|
||||||
),
|
),
|
||||||
],
|
],
|
||||||
direction="left",
|
|
||||||
pad={"r": 10, "t": 87},
|
|
||||||
x=0.1,
|
|
||||||
xanchor="right",
|
|
||||||
y=0,
|
|
||||||
yanchor="top",
|
|
||||||
)
|
)
|
||||||
]
|
]
|
||||||
|
|
||||||
# Layout settings
|
|
||||||
fig.update_layout(
|
fig.update_layout(
|
||||||
title="Iterative Factor Graph SLAM Animation",
|
title="Iterative Factor Graph SLAM Animation",
|
||||||
xaxis=dict(
|
xaxis=dict(range=[-world_size / 2 - 2, world_size / 2 + 2], constrain="domain"),
|
||||||
range=[-world_size / 2 - 2, world_size / 2 + 2],
|
|
||||||
constrain="domain", # Keep aspect ratio when zooming
|
|
||||||
),
|
|
||||||
yaxis=dict(
|
yaxis=dict(
|
||||||
range=[-world_size / 2 - 2, world_size / 2 + 2],
|
range=[-world_size / 2 - 2, world_size / 2 + 2],
|
||||||
scaleanchor="x", # Ensure square aspect ratio
|
scaleanchor="x",
|
||||||
scaleratio=1,
|
scaleratio=1,
|
||||||
),
|
),
|
||||||
width=800,
|
width=800,
|
||||||
|
@ -364,8 +322,7 @@ def _configure_figure_layout(
|
||||||
hovermode="closest",
|
hovermode="closest",
|
||||||
updatemenus=updatemenus,
|
updatemenus=updatemenus,
|
||||||
sliders=sliders,
|
sliders=sliders,
|
||||||
shapes=initial_shapes, # Set initial shapes from frame 0
|
shapes=initial_shapes,
|
||||||
# Add legend if desired
|
|
||||||
legend=dict(
|
legend=dict(
|
||||||
traceorder="reversed",
|
traceorder="reversed",
|
||||||
title_text="Legend",
|
title_text="Legend",
|
||||||
|
@ -378,90 +335,79 @@ def _configure_figure_layout(
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
# --- Main Animation Function (Orchestrator) ---
|
# --- Main Animation Orchestrator ---
|
||||||
|
|
||||||
|
|
||||||
def create_slam_animation(
|
def create_slam_animation(
|
||||||
results_history: List[gtsam.Values],
|
results_history: List[gtsam.Values],
|
||||||
marginals_history: List[Optional[gtsam.Marginals]],
|
marginals_history: List[Optional[gtsam.Marginals]],
|
||||||
num_steps: int,
|
num_steps: int,
|
||||||
X: callable,
|
X: Callable[[int], int],
|
||||||
L: callable,
|
L: Callable[[int], int],
|
||||||
|
max_landmark_index: int, # Required to iterate potential landmarks
|
||||||
landmarks_gt_array: Optional[np.ndarray] = None,
|
landmarks_gt_array: Optional[np.ndarray] = None,
|
||||||
poses_gt: Optional[List[gtsam.Pose2]] = None,
|
poses_gt: Optional[List[gtsam.Pose2]] = None,
|
||||||
world_size: float = 20.0,
|
world_size: float = 20.0,
|
||||||
ellipse_scale: float = 2.0,
|
ellipse_scale: float = 2.0,
|
||||||
verbose_cov_errors: bool = False,
|
verbose_cov_errors: bool = False,
|
||||||
) -> go.Figure:
|
) -> go.Figure:
|
||||||
"""
|
"""Creates a modular Plotly SLAM animation."""
|
||||||
Creates a Plotly animation of the SLAM results in a modular way.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
results_history: List of gtsam.Values, one per step.
|
|
||||||
marginals_history: List of gtsam.Marginals or None, one per step.
|
|
||||||
num_steps: The total number of steps (results_history should have length num_steps + 1).
|
|
||||||
X: Symbol function for poses (e.g., lambda i: gtsam.symbol('x', i)).
|
|
||||||
L: Symbol function for landmarks (e.g., lambda j: gtsam.symbol('l', j)).
|
|
||||||
landmarks_gt_array: Optional Nx2 numpy array of ground truth landmark positions.
|
|
||||||
poses_gt: Optional list of gtsam.Pose2 ground truth poses.
|
|
||||||
world_size: Approximate size of the world for axis scaling.
|
|
||||||
ellipse_scale: Scaling factor for covariance ellipses (e.g., 2.0 for 2-sigma).
|
|
||||||
verbose_cov_errors: If True, print warnings for covariance calculation errors.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
A plotly.graph_objects.Figure containing the animation.
|
|
||||||
"""
|
|
||||||
print("Generating Plotly animation...")
|
print("Generating Plotly animation...")
|
||||||
|
|
||||||
fig = go.Figure()
|
fig = go.Figure()
|
||||||
|
|
||||||
# 1. Add static ground truth elements
|
# 1. Add static ground truth traces to the base figure (visible always)
|
||||||
_add_ground_truth_traces(fig, landmarks_gt_array, poses_gt)
|
gt_lm_trace = create_gt_landmarks_trace(landmarks_gt_array)
|
||||||
|
if gt_lm_trace:
|
||||||
|
fig.add_trace(gt_lm_trace)
|
||||||
|
gt_path_trace = create_gt_path_trace(poses_gt)
|
||||||
|
if gt_path_trace:
|
||||||
|
fig.add_trace(gt_path_trace)
|
||||||
|
|
||||||
# 2. Create frames for animation
|
# 2. Generate frames with dynamic content
|
||||||
frames = []
|
frames = []
|
||||||
steps_iterable = range(num_steps + 1)
|
steps_iterable = range(num_steps + 1)
|
||||||
|
|
||||||
# Use tqdm for progress bar if available
|
|
||||||
try:
|
try:
|
||||||
steps_iterable = tqdm(steps_iterable, desc="Creating Frames")
|
steps_iterable = tqdm(steps_iterable, desc="Creating Frames")
|
||||||
except NameError:
|
except NameError:
|
||||||
pass # tqdm not installed or not in notebook env
|
pass # tqdm optional
|
||||||
|
|
||||||
for k in steps_iterable:
|
for k in steps_iterable:
|
||||||
step_results = results_history[k]
|
step_results = results_history[k]
|
||||||
step_marginals = marginals_history[k] if marginals_history else None
|
step_marginals = marginals_history[k] if marginals_history else None
|
||||||
|
|
||||||
# Create traces and shapes for this specific frame
|
frame_traces, frame_shapes = generate_frame_content(
|
||||||
frame_traces, frame_shapes = _create_single_frame_data(
|
k,
|
||||||
k, step_results, step_marginals, X, L, ellipse_scale, verbose_cov_errors
|
step_results,
|
||||||
|
step_marginals,
|
||||||
|
X,
|
||||||
|
L,
|
||||||
|
max_landmark_index,
|
||||||
|
ellipse_scale,
|
||||||
|
verbose_cov_errors,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Create the Plotly frame object
|
|
||||||
frames.append(
|
frames.append(
|
||||||
go.Frame(
|
go.Frame(
|
||||||
data=frame_traces,
|
data=frame_traces, name=str(k), layout=go.Layout(shapes=frame_shapes)
|
||||||
name=str(k), # Name used by slider/buttons
|
|
||||||
layout=go.Layout(
|
|
||||||
shapes=frame_shapes
|
|
||||||
), # Shapes are part of layout per frame
|
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
# 3. Set initial figure state (using data from frame 0)
|
# 3. Set initial dynamic data (from frame 0) onto the base figure
|
||||||
if frames:
|
initial_dynamic_traces = []
|
||||||
# Add traces from the first frame as the initial state
|
|
||||||
for trace in frames[0].data:
|
|
||||||
fig.add_trace(trace)
|
|
||||||
initial_shapes = frames[0].layout.shapes if frames[0].layout else []
|
|
||||||
else:
|
|
||||||
initial_shapes = []
|
initial_shapes = []
|
||||||
|
if frames:
|
||||||
|
# Important: Add *copies* or ensure traces are regenerated if needed,
|
||||||
|
# though Plotly usually handles this ok with frame data.
|
||||||
|
initial_dynamic_traces = frames[0].data
|
||||||
|
initial_shapes = frames[0].layout.shapes if frames[0].layout else []
|
||||||
|
for trace in initial_dynamic_traces:
|
||||||
|
fig.add_trace(trace) # Add Est Path[0], Est Landmarks[0] traces
|
||||||
|
|
||||||
# 4. Assign frames to the figure
|
# 4. Assign frames to the figure
|
||||||
fig.update(frames=frames)
|
fig.update(frames=frames)
|
||||||
|
|
||||||
# 5. Configure overall layout, slider, buttons
|
# 5. Configure layout, axes, controls
|
||||||
_configure_figure_layout(fig, num_steps, world_size, initial_shapes)
|
# Pass initial_shapes for the layout's starting state
|
||||||
|
configure_figure_layout(fig, num_steps, world_size, initial_shapes)
|
||||||
|
|
||||||
print("Plotly animation generated.")
|
print("Plotly animation generated.")
|
||||||
return fig
|
return fig
|
||||||
|
|
Loading…
Reference in New Issue