new isam2 alg - mostly done

release/4.3a0
Michael Kaess 2010-07-09 23:18:10 +00:00
parent 80dc9510d6
commit 1bc2efc8b0
2 changed files with 111 additions and 0 deletions

View File

@ -133,6 +133,7 @@ namespace gtsam {
}
/* ************************************************************************* */
// todo: will be obsolete soon
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::update_internal(const NonlinearFactorGraph<Config>& newFactors,
const Config& newTheta, Cliques& orphans, double wildfire_threshold, double relinearize_threshold, bool relinearize) {
@ -278,14 +279,122 @@ namespace gtsam {
}
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::linear_update(const FactorGraph<GaussianFactor>& newFactors) {
// Input: BayesTree(this), newFactors
// 1. Remove top of Bayes tree and convert to a factor graph:
// (a) For each affected variable, remove the corresponding clique and all parents up to the root.
// (b) Store orphaned sub-trees \BayesTree_{O} of removed cliques.
const list<Symbol> newKeys = newFactors.keys();
Cliques& orphans;
BayesNet<GaussianConditional> affectedBayesNet;
this->removeTop(newKeys, affectedBayesNet, orphans);
FactorGraph<GaussianFactor> factors(affectedBayesNet);
// 2. Add the new factors \Factors' into the resulting factor graph
factors.push_back(newFactors);
// 3. Re-order and eliminate the factor graph into a Bayes net (Algorithm [alg:eliminate]), and re-assemble into a new Bayes tree (Algorithm [alg:BayesTree])
// create an ordering for the new and contaminated factors
// newKeys are passed in: those variables will be forced to the end in the ordering
set<Symbol> newKeysSet;
newKeysSet.insert(newKeys.begin(), newKeys.end());
Ordering ordering = factors.getConstrainedOrdering(newKeysSet);
// eliminate into a Bayes net
BayesNet<Conditional> bayesNet = _eliminate(factors, cached_, ordering);
// Create Index from ordering
IndexTable<Symbol> index(ordering);
// insert conditionals back in, straight into the topless bayesTree
typename BayesNet<Conditional>::const_reverse_iterator rit;
for ( rit=bayesNet.rbegin(); rit != bayesNet.rend(); ++rit )
this->insert(*rit, index);
// Save number of affectedCliques
lastAffectedCliqueCount = this->size();
// 4. Insert the orphans back into the new Bayes tree.
// add orphans to the bottom of the new tree
BOOST_FOREACH(sharedClique orphan, orphans) {
Symbol parentRepresentative = findParentClique(orphan->separator_, index);
sharedClique parent = (*this)[parentRepresentative];
parent->children_ += orphan;
orphan->parent_ = parent; // set new parent!
}
// Output: BayesTree(this)
}
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::fluid_relinearization(double relinearize_threshold) {
// Input: nonlinear factors factors_, linearization point theta_, Bayes tree (this), delta_
// 1. Mark variables in \Delta above threshold \beta: J=\{\Delta_{j}\in\Delta|\Delta_{j}\geq\beta\}.
std::list<Symbol> marked;
VectorConfig deltaMarked;
for (VectorConfig::const_iterator it = delta_.begin(); it!=delta_.end(); it++) {
Symbol key = it->first;
Vector v = it->second;
if (max(abs(v)) >= relinearize_threshold) {
marked.push_back(key);
deltaMarked.insert(key, v);
}
}
// 2. Update linearization point for marked variables: \Theta_{J}:=\Theta_{J}+\Delta_{J}.
theta_ = expmap(theta_, deltaMarked);
// 3. Mark all cliques that involve marked variables \Theta_{J} and all their ancestors.
// 4. From the leaves to the top, if a clique is marked:
// re-linearize the original factors in \Factors associated with the clique,
// add the cached marginal factors from its children, and re-eliminate.
// Output: updated Bayes tree (this), updated linearization point theta_
}
template<class Conditional, class Config>
void ISAM2<Conditional, Config>::update(
const NonlinearFactorGraph<Config>& newFactors, const Config& newTheta,
double wildfire_threshold, double relinearize_threshold, bool relinearize) {
#if 1
// old algorithm:
Cliques orphans;
this->update_internal(newFactors, newTheta, orphans, wildfire_threshold, relinearize_threshold, relinearize);
#else
// 1. Add any new factors \Factors:=\Factors\cup\Factors'.
nonlinearFactors_.push_back(newFactors);
// 2. Initialize any new variables \Theta_{new} and add \Theta:=\Theta\cup\Theta_{new}.
theta_.insert(newTheta);
// 3. Linearize new factor
FactorGraph<GaussianFactor> linearFactors = newFactors.linearize(theta_);
// 4. Linear iSAM step (alg 3)
linear_update(linearFactors); // in: this
// 5. Calculate Delta (alg 0)
delta_ = optimize2(*this, wildfire_threshold);
// 6. Iterate Algorithm 4 until no more re-linearizations occur
if (relinearize)
fluid_relinearization(relinearize_threshold); // in: delta_, theta_, nonlinearFactors_, this
// todo: linearization point and delta_ do not fit... have to update delta again
delta_ = optimize2(*this, wildfire_threshold);
#endif
}
/* ************************************************************************* */

View File

@ -68,6 +68,8 @@ namespace gtsam {
/**
* ISAM2. (update_internal provides access to list of orphans for drawing purposes)
*/
void linear_update(const FactorGraph<GaussianFactor>& newFactors);
void fluid_relinearization(double relinearize_threshold);
void update_internal(const NonlinearFactorGraph<Config>& newFactors,
const Config& newTheta, Cliques& orphans,
double wildfire_threshold, double relinearize_threshold, bool relinearize);