Moved preintegration into separate example, inherit from it
parent
b6ead53c25
commit
1ba304a2e3
|
@ -1,5 +1,5 @@
|
||||||
"""
|
"""
|
||||||
A script validating the ImuFactor prediction and inference.
|
A script validating the ImuFactor inference.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import math
|
import math
|
||||||
|
@ -10,106 +10,20 @@ from mpl_toolkits.mplot3d import Axes3D
|
||||||
|
|
||||||
import gtsam
|
import gtsam
|
||||||
from gtsam_utils import plotPose3
|
from gtsam_utils import plotPose3
|
||||||
|
from PreintegrationExample import PreintegrationExample
|
||||||
|
|
||||||
class ImuFactorExample(object):
|
class ImuFactorExample(PreintegrationExample):
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def defaultParams(g):
|
|
||||||
"""Create default parameters with Z *up* and realistic noise parameters"""
|
|
||||||
params = gtsam.PreintegrationParams.MakeSharedU(g)
|
|
||||||
kGyroSigma = math.radians(0.5) / 60 # 0.5 degree ARW
|
|
||||||
kAccelSigma = 0.1 / 60 # 10 cm VRW
|
|
||||||
params.gyroscopeCovariance = kGyroSigma ** 2 * np.identity(3, np.float)
|
|
||||||
params.accelerometerCovariance = kAccelSigma ** 2 * np.identity(3, np.float)
|
|
||||||
params.integrationCovariance = 0.0000001 ** 2 * np.identity(3, np.float)
|
|
||||||
return params
|
|
||||||
|
|
||||||
def __init__(self):
|
|
||||||
# setup interactive plotting
|
|
||||||
plt.ion()
|
|
||||||
|
|
||||||
# Setup loop scenario
|
|
||||||
# Forward velocity 2m/s
|
|
||||||
# Pitch up with angular velocity 6 degree/sec (negative in FLU)
|
|
||||||
v = 2
|
|
||||||
w = math.radians(30)
|
|
||||||
W = np.array([0, -w, 0])
|
|
||||||
V = np.array([v, 0, 0])
|
|
||||||
self.scenario = gtsam.ConstantTwistScenario(W, V)
|
|
||||||
self.dt = 1e-2
|
|
||||||
|
|
||||||
# Calculate time to do 1 loop
|
|
||||||
self.radius = v / w
|
|
||||||
self.timeForOneLoop = 2.0 * math.pi / w
|
|
||||||
self.labels = list('xyz')
|
|
||||||
self.colors = list('rgb')
|
|
||||||
|
|
||||||
# Create runner
|
|
||||||
self.g = 10 # simple gravity constant
|
|
||||||
self.params = self.defaultParams(self.g)
|
|
||||||
ptr = gtsam.ScenarioPointer(self.scenario)
|
|
||||||
accBias = np.array([0, 0.1, 0])
|
|
||||||
gyroBias = np.array([0, 0, 0])
|
|
||||||
self.actualBias = gtsam.ConstantBias(accBias, gyroBias)
|
|
||||||
print(self.actualBias)
|
|
||||||
self.runner = gtsam.ScenarioRunner(ptr, self.params, self.dt, self.actualBias)
|
|
||||||
|
|
||||||
def plot(self, t, measuredOmega, measuredAcc):
|
|
||||||
# plot angular velocity
|
|
||||||
omega_b = self.scenario.omega_b(t)
|
|
||||||
plt.figure(1)
|
|
||||||
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
|
|
||||||
plt.subplot(3, 1, i + 1)
|
|
||||||
plt.scatter(t, omega_b[i], color='k', marker='.')
|
|
||||||
plt.scatter(t, measuredOmega[i], color=color, marker='.')
|
|
||||||
plt.xlabel(label)
|
|
||||||
|
|
||||||
# plot acceleration in nav
|
|
||||||
plt.figure(2)
|
|
||||||
acceleration_n = self.scenario.acceleration_n(t)
|
|
||||||
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
|
|
||||||
plt.subplot(3, 1, i + 1)
|
|
||||||
plt.scatter(t, acceleration_n[i], color=color, marker='.')
|
|
||||||
plt.xlabel(label)
|
|
||||||
|
|
||||||
# plot acceleration in body
|
|
||||||
plt.figure(3)
|
|
||||||
acceleration_b = self.scenario.acceleration_b(t)
|
|
||||||
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
|
|
||||||
plt.subplot(3, 1, i + 1)
|
|
||||||
plt.scatter(t, acceleration_b[i], color=color, marker='.')
|
|
||||||
plt.xlabel(label)
|
|
||||||
|
|
||||||
# plot ground truth pose, as well as prediction from integrated IMU measurements
|
|
||||||
actualPose = self.scenario.pose(t)
|
|
||||||
plotPose3(4, actualPose, 0.3)
|
|
||||||
pim = self.runner.integrate(t, self.actualBias, True)
|
|
||||||
predictedNavState = self.runner.predict(pim, self.actualBias)
|
|
||||||
plotPose3(4, predictedNavState.pose(), 0.1)
|
|
||||||
ax = plt.gca()
|
|
||||||
ax.set_xlim3d(-self.radius, self.radius)
|
|
||||||
ax.set_ylim3d(-self.radius, self.radius)
|
|
||||||
ax.set_zlim3d(0, self.radius * 2)
|
|
||||||
|
|
||||||
# plot actual specific force, as well as corrupted
|
|
||||||
plt.figure(5)
|
|
||||||
actual = self.runner.actualSpecificForce(t)
|
|
||||||
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
|
|
||||||
plt.subplot(3, 1, i + 1)
|
|
||||||
plt.scatter(t, actual[i], color='k', marker='.')
|
|
||||||
plt.scatter(t, measuredAcc[i], color=color, marker='.')
|
|
||||||
plt.xlabel(label)
|
|
||||||
|
|
||||||
plt.pause(0.01)
|
|
||||||
|
|
||||||
def run(self):
|
def run(self):
|
||||||
# simulate the loop up to the top
|
# simulate the loop up to the top
|
||||||
T = self.timeForOneLoop
|
T = self.timeForOneLoop
|
||||||
|
pim = gtsam.PreintegratedImuMeasurements(self.params, self.actualBias)
|
||||||
for i, t in enumerate(np.arange(0, T, self.dt)):
|
for i, t in enumerate(np.arange(0, T, self.dt)):
|
||||||
measuredOmega = self.runner.measuredAngularVelocity(t)
|
measuredOmega = self.runner.measuredAngularVelocity(t)
|
||||||
measuredAcc = self.runner.measuredSpecificForce(t)
|
measuredAcc = self.runner.measuredSpecificForce(t)
|
||||||
if i % 25 == 0:
|
if i % 25 == 0:
|
||||||
self.plot(t, measuredOmega, measuredAcc)
|
self.plotImu(t, measuredOmega, measuredAcc)
|
||||||
|
self.plotGroundTruthPose(t)
|
||||||
|
|
||||||
plt.ioff()
|
plt.ioff()
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
|
@ -0,0 +1,120 @@
|
||||||
|
"""
|
||||||
|
A script validating the Preintegration of IMU measurements
|
||||||
|
"""
|
||||||
|
|
||||||
|
import math
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from mpl_toolkits.mplot3d import Axes3D
|
||||||
|
|
||||||
|
import gtsam
|
||||||
|
from gtsam_utils import plotPose3
|
||||||
|
|
||||||
|
IMU_FIG = 1
|
||||||
|
GROUND_TRUTH_FIG = 2
|
||||||
|
|
||||||
|
class PreintegrationExample(object):
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def defaultParams(g):
|
||||||
|
"""Create default parameters with Z *up* and realistic noise parameters"""
|
||||||
|
params = gtsam.PreintegrationParams.MakeSharedU(g)
|
||||||
|
kGyroSigma = math.radians(0.5) / 60 # 0.5 degree ARW
|
||||||
|
kAccelSigma = 0.1 / 60 # 10 cm VRW
|
||||||
|
params.gyroscopeCovariance = kGyroSigma ** 2 * np.identity(3, np.float)
|
||||||
|
params.accelerometerCovariance = kAccelSigma ** 2 * np.identity(3, np.float)
|
||||||
|
params.integrationCovariance = 0.0000001 ** 2 * np.identity(3, np.float)
|
||||||
|
return params
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
# setup interactive plotting
|
||||||
|
plt.ion()
|
||||||
|
|
||||||
|
# Setup loop scenario
|
||||||
|
# Forward velocity 2m/s
|
||||||
|
# Pitch up with angular velocity 6 degree/sec (negative in FLU)
|
||||||
|
v = 2
|
||||||
|
w = math.radians(30)
|
||||||
|
W = np.array([0, -w, 0])
|
||||||
|
V = np.array([v, 0, 0])
|
||||||
|
self.scenario = gtsam.ConstantTwistScenario(W, V)
|
||||||
|
self.dt = 1e-2
|
||||||
|
|
||||||
|
# Calculate time to do 1 loop
|
||||||
|
self.radius = v / w
|
||||||
|
self.timeForOneLoop = 2.0 * math.pi / w
|
||||||
|
self.labels = list('xyz')
|
||||||
|
self.colors = list('rgb')
|
||||||
|
|
||||||
|
# Create runner
|
||||||
|
self.g = 10 # simple gravity constant
|
||||||
|
self.params = self.defaultParams(self.g)
|
||||||
|
ptr = gtsam.ScenarioPointer(self.scenario)
|
||||||
|
accBias = np.array([0, 0.1, 0])
|
||||||
|
gyroBias = np.array([0, 0, 0])
|
||||||
|
self.actualBias = gtsam.ConstantBias(accBias, gyroBias)
|
||||||
|
self.runner = gtsam.ScenarioRunner(ptr, self.params, self.dt, self.actualBias)
|
||||||
|
|
||||||
|
def plotImu(self, t, measuredOmega, measuredAcc):
|
||||||
|
plt.figure(IMU_FIG)
|
||||||
|
|
||||||
|
# plot angular velocity
|
||||||
|
omega_b = self.scenario.omega_b(t)
|
||||||
|
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
|
||||||
|
plt.subplot(4, 3, i + 1)
|
||||||
|
plt.scatter(t, omega_b[i], color='k', marker='.')
|
||||||
|
plt.scatter(t, measuredOmega[i], color=color, marker='.')
|
||||||
|
plt.xlabel('angular velocity ' + label)
|
||||||
|
|
||||||
|
# plot acceleration in nav
|
||||||
|
acceleration_n = self.scenario.acceleration_n(t)
|
||||||
|
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
|
||||||
|
plt.subplot(4, 3, i + 4)
|
||||||
|
plt.scatter(t, acceleration_n[i], color=color, marker='.')
|
||||||
|
plt.xlabel('acceleration in nav ' + label)
|
||||||
|
|
||||||
|
# plot acceleration in body
|
||||||
|
acceleration_b = self.scenario.acceleration_b(t)
|
||||||
|
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
|
||||||
|
plt.subplot(4, 3, i + 7)
|
||||||
|
plt.scatter(t, acceleration_b[i], color=color, marker='.')
|
||||||
|
plt.xlabel('acceleration in body ' + label)
|
||||||
|
|
||||||
|
# plot actual specific force, as well as corrupted
|
||||||
|
actual = self.runner.actualSpecificForce(t)
|
||||||
|
for i, (label, color) in enumerate(zip(self.labels, self.colors)):
|
||||||
|
plt.subplot(4, 3, i + 10)
|
||||||
|
plt.scatter(t, actual[i], color='k', marker='.')
|
||||||
|
plt.scatter(t, measuredAcc[i], color=color, marker='.')
|
||||||
|
plt.xlabel('specific force ' + label)
|
||||||
|
|
||||||
|
def plotGroundTruthPose(self, t):
|
||||||
|
# plot ground truth pose, as well as prediction from integrated IMU measurements
|
||||||
|
actualPose = self.scenario.pose(t)
|
||||||
|
plotPose3(GROUND_TRUTH_FIG, actualPose, 0.3)
|
||||||
|
ax = plt.gca()
|
||||||
|
ax.set_xlim3d(-self.radius, self.radius)
|
||||||
|
ax.set_ylim3d(-self.radius, self.radius)
|
||||||
|
ax.set_zlim3d(0, self.radius * 2)
|
||||||
|
|
||||||
|
plt.pause(0.01)
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
# simulate the loop up to the top
|
||||||
|
T = self.timeForOneLoop
|
||||||
|
for i, t in enumerate(np.arange(0, T, self.dt)):
|
||||||
|
measuredOmega = self.runner.measuredAngularVelocity(t)
|
||||||
|
measuredAcc = self.runner.measuredSpecificForce(t)
|
||||||
|
if i % 25 == 0:
|
||||||
|
self.plotImu(t, measuredOmega, measuredAcc)
|
||||||
|
self.plotGroundTruthPose(t)
|
||||||
|
pim = self.runner.integrate(t, self.actualBias, True)
|
||||||
|
predictedNavState = self.runner.predict(pim, self.actualBias)
|
||||||
|
plotPose3(GROUND_TRUTH_FIG, predictedNavState.pose(), 0.1)
|
||||||
|
|
||||||
|
plt.ioff()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
PreintegrationExample().run()
|
Loading…
Reference in New Issue