diff --git a/python/gtsam/utils/plot.py b/python/gtsam/utils/plot.py index 8060de2fb..820cefb7c 100644 --- a/python/gtsam/utils/plot.py +++ b/python/gtsam/utils/plot.py @@ -79,6 +79,8 @@ def plot_covariance_ellipse_3d(axes, k = 3.527 corresponds to 1 std, 68.26% of all probability k = 14.157 corresponds to 3 std, 99.74% of all probability + We choose k = 5 which corresponds to 99.99846% of all probability in 3D + Args: axes (matplotlib.axes.Axes): Matplotlib axes. origin: The origin in the world frame. @@ -88,7 +90,8 @@ def plot_covariance_ellipse_3d(axes, n: Defines the granularity of the ellipse. Higher values indicate finer ellipses. alpha: Transparency value for the plotted surface in the range [0, 1]. """ - k = np.sqrt(14.157) + # Sigma value corresponding to the covariance ellipse + k = 5 U, S, _ = np.linalg.svd(P) radii = k * np.sqrt(S) @@ -123,6 +126,8 @@ def plot_point2_on_axes(axes, k = 2.296 corresponds to 1 std, 68.26% of all probability k = 11.820 corresponds to 3 std, 99.74% of all probability + We choose k = 5 which corresponds to 99.99963% of all probability for 2D. + Args: axes (matplotlib.axes.Axes): Matplotlib axes. point: The point to be plotted. @@ -133,15 +138,15 @@ def plot_point2_on_axes(axes, if P is not None: w, v = np.linalg.eig(P) - # Scaling value for the uncertainty ellipse, we multiply by 2 because - # matplotlib takes the diameter and not the radius of the major and - # minor axes of the ellipse. - k = 2*np.sqrt(11.820) + # Sigma value corresponding to the covariance ellipse + k = 5 angle = np.arctan2(v[1, 0], v[0, 0]) + # We multiply k by 2 since k corresponds to the radius but Ellipse uses + # the diameter. e1 = patches.Ellipse(point, - np.sqrt(w[0]) * k, - np.sqrt(w[1]) * k, + np.sqrt(w[0]) * 2 * k, + np.sqrt(w[1]) * 2 * k, np.rad2deg(angle), fill=False) axes.add_patch(e1) @@ -191,6 +196,8 @@ def plot_pose2_on_axes(axes, k = 2.296 corresponds to 1 std, 68.26% of all probability k = 11.820 corresponds to 3 std, 99.74% of all probability + We choose k = 5 which corresponds to 99.99963% of all probability for 2D. + Args: axes (matplotlib.axes.Axes): Matplotlib axes. pose: The pose to be plotted. @@ -218,12 +225,15 @@ def plot_pose2_on_axes(axes, w, v = np.linalg.eig(gPp) - k = 2*np.sqrt(11.820) + # Sigma value corresponding to the covariance ellipse + k = 5 angle = np.arctan2(v[1, 0], v[0, 0]) + # We multiply k by 2 since k corresponds to the radius but Ellipse uses + # the diameter. e1 = patches.Ellipse(origin, - np.sqrt(w[0]) * k, - np.sqrt(w[1]) * k, + np.sqrt(w[0]) * 2 * k, + np.sqrt(w[1]) * 2 * k, np.rad2deg(angle), fill=False) axes.add_patch(e1)