Merge pull request #1616 from borglab/cherrypick-transitivity-fix-dsftrackgenerator
Cherrypick commits for release/4.2, that include transitivity fix for DsfTrackGeneratorrelease/4.3a0
commit
1a869444bf
|
@ -20,6 +20,7 @@
|
||||||
|
|
||||||
#include <algorithm>
|
#include <algorithm>
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
|
#include <iomanip>
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
|
@ -38,7 +39,8 @@ static DSFMapIndexPair generateDSF(const MatchIndicesMap& matches) {
|
||||||
// Image pair is (i1,i2).
|
// Image pair is (i1,i2).
|
||||||
size_t i1 = pair_indices.first;
|
size_t i1 = pair_indices.first;
|
||||||
size_t i2 = pair_indices.second;
|
size_t i2 = pair_indices.second;
|
||||||
for (size_t k = 0; k < corr_indices.rows(); k++) {
|
size_t m = static_cast<size_t>(corr_indices.rows());
|
||||||
|
for (size_t k = 0; k < m; k++) {
|
||||||
// Measurement indices are found in a single matrix row, as (k1,k2).
|
// Measurement indices are found in a single matrix row, as (k1,k2).
|
||||||
size_t k1 = corr_indices(k, 0), k2 = corr_indices(k, 1);
|
size_t k1 = corr_indices(k, 0), k2 = corr_indices(k, 1);
|
||||||
// Unique key for DSF is (i,k), representing keypoint index in an image.
|
// Unique key for DSF is (i,k), representing keypoint index in an image.
|
||||||
|
@ -128,7 +130,7 @@ std::vector<SfmTrack2d> tracksFromPairwiseMatches(
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO(johnwlambert): return the Transitivity failure percentage here.
|
// TODO(johnwlambert): return the Transitivity failure percentage here.
|
||||||
return tracks2d;
|
return validTracks;
|
||||||
}
|
}
|
||||||
|
|
||||||
} // namespace gtsfm
|
} // namespace gtsfm
|
||||||
|
|
|
@ -4,18 +4,44 @@ Authors: John Lambert
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import unittest
|
import unittest
|
||||||
|
from typing import Dict, Tuple
|
||||||
|
|
||||||
import gtsam
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from gtsam import (IndexPair, KeypointsVector, MatchIndicesMap, Point2,
|
|
||||||
SfmMeasurementVector, SfmTrack2d)
|
|
||||||
from gtsam.gtsfm import Keypoints
|
from gtsam.gtsfm import Keypoints
|
||||||
from gtsam.utils.test_case import GtsamTestCase
|
from gtsam.utils.test_case import GtsamTestCase
|
||||||
|
|
||||||
|
import gtsam
|
||||||
|
from gtsam import (IndexPair, KeypointsVector, MatchIndicesMap, Point2,
|
||||||
|
SfmMeasurementVector, SfmTrack2d)
|
||||||
|
|
||||||
|
|
||||||
class TestDsfTrackGenerator(GtsamTestCase):
|
class TestDsfTrackGenerator(GtsamTestCase):
|
||||||
"""Tests for DsfTrackGenerator."""
|
"""Tests for DsfTrackGenerator."""
|
||||||
|
|
||||||
|
def test_generate_tracks_from_pairwise_matches_nontransitive(
|
||||||
|
self,
|
||||||
|
) -> None:
|
||||||
|
"""Tests DSF for non-transitive matches.
|
||||||
|
|
||||||
|
Test will result in no tracks since nontransitive tracks are naively
|
||||||
|
discarded by DSF.
|
||||||
|
"""
|
||||||
|
keypoints = get_dummy_keypoints_list()
|
||||||
|
nontransitive_matches = get_nontransitive_matches()
|
||||||
|
|
||||||
|
# For each image pair (i1,i2), we provide a (K,2) matrix
|
||||||
|
# of corresponding keypoint indices (k1,k2).
|
||||||
|
matches = MatchIndicesMap()
|
||||||
|
for (i1, i2), correspondences in nontransitive_matches.items():
|
||||||
|
matches[IndexPair(i1, i2)] = correspondences
|
||||||
|
|
||||||
|
tracks = gtsam.gtsfm.tracksFromPairwiseMatches(
|
||||||
|
matches,
|
||||||
|
keypoints,
|
||||||
|
verbose=True,
|
||||||
|
)
|
||||||
|
self.assertEqual(len(tracks), 0, "Tracks not filtered correctly")
|
||||||
|
|
||||||
def test_track_generation(self) -> None:
|
def test_track_generation(self) -> None:
|
||||||
"""Ensures that DSF generates three tracks from measurements
|
"""Ensures that DSF generates three tracks from measurements
|
||||||
in 3 images (H=200,W=400)."""
|
in 3 images (H=200,W=400)."""
|
||||||
|
@ -23,20 +49,20 @@ class TestDsfTrackGenerator(GtsamTestCase):
|
||||||
kps_i1 = Keypoints(np.array([[50.0, 60], [70, 80], [90, 100]]))
|
kps_i1 = Keypoints(np.array([[50.0, 60], [70, 80], [90, 100]]))
|
||||||
kps_i2 = Keypoints(np.array([[110.0, 120], [130, 140]]))
|
kps_i2 = Keypoints(np.array([[110.0, 120], [130, 140]]))
|
||||||
|
|
||||||
keypoints_list = KeypointsVector()
|
keypoints = KeypointsVector()
|
||||||
keypoints_list.append(kps_i0)
|
keypoints.append(kps_i0)
|
||||||
keypoints_list.append(kps_i1)
|
keypoints.append(kps_i1)
|
||||||
keypoints_list.append(kps_i2)
|
keypoints.append(kps_i2)
|
||||||
|
|
||||||
# For each image pair (i1,i2), we provide a (K,2) matrix
|
# For each image pair (i1,i2), we provide a (K,2) matrix
|
||||||
# of corresponding image indices (k1,k2).
|
# of corresponding image indices (k1,k2).
|
||||||
matches_dict = MatchIndicesMap()
|
matches = MatchIndicesMap()
|
||||||
matches_dict[IndexPair(0, 1)] = np.array([[0, 0], [1, 1]])
|
matches[IndexPair(0, 1)] = np.array([[0, 0], [1, 1]])
|
||||||
matches_dict[IndexPair(1, 2)] = np.array([[2, 0], [1, 1]])
|
matches[IndexPair(1, 2)] = np.array([[2, 0], [1, 1]])
|
||||||
|
|
||||||
tracks = gtsam.gtsfm.tracksFromPairwiseMatches(
|
tracks = gtsam.gtsfm.tracksFromPairwiseMatches(
|
||||||
matches_dict,
|
matches,
|
||||||
keypoints_list,
|
keypoints,
|
||||||
verbose=False,
|
verbose=False,
|
||||||
)
|
)
|
||||||
assert len(tracks) == 3
|
assert len(tracks) == 3
|
||||||
|
@ -93,5 +119,71 @@ class TestSfmTrack2d(GtsamTestCase):
|
||||||
assert track.numberMeasurements() == 1
|
assert track.numberMeasurements() == 1
|
||||||
|
|
||||||
|
|
||||||
|
def get_dummy_keypoints_list() -> KeypointsVector:
|
||||||
|
"""Generate a list of dummy keypoints for testing."""
|
||||||
|
img1_kp_coords = np.array([[1, 1], [2, 2], [3, 3.]])
|
||||||
|
img2_kp_coords = np.array(
|
||||||
|
[
|
||||||
|
[1, 1.],
|
||||||
|
[2, 2],
|
||||||
|
[3, 3],
|
||||||
|
[4, 4],
|
||||||
|
[5, 5],
|
||||||
|
[6, 6],
|
||||||
|
[7, 7],
|
||||||
|
[8, 8],
|
||||||
|
]
|
||||||
|
)
|
||||||
|
img3_kp_coords = np.array(
|
||||||
|
[
|
||||||
|
[1, 1.],
|
||||||
|
[2, 2],
|
||||||
|
[3, 3],
|
||||||
|
[4, 4],
|
||||||
|
[5, 5],
|
||||||
|
[6, 6],
|
||||||
|
[7, 7],
|
||||||
|
[8, 8],
|
||||||
|
[9, 9],
|
||||||
|
[10, 10],
|
||||||
|
]
|
||||||
|
)
|
||||||
|
img4_kp_coords = np.array(
|
||||||
|
[
|
||||||
|
[1, 1.],
|
||||||
|
[2, 2],
|
||||||
|
[3, 3],
|
||||||
|
[4, 4],
|
||||||
|
[5, 5],
|
||||||
|
]
|
||||||
|
)
|
||||||
|
keypoints = KeypointsVector()
|
||||||
|
keypoints.append(Keypoints(coordinates=img1_kp_coords))
|
||||||
|
keypoints.append(Keypoints(coordinates=img2_kp_coords))
|
||||||
|
keypoints.append(Keypoints(coordinates=img3_kp_coords))
|
||||||
|
keypoints.append(Keypoints(coordinates=img4_kp_coords))
|
||||||
|
return keypoints
|
||||||
|
|
||||||
|
|
||||||
|
def get_nontransitive_matches() -> Dict[Tuple[int, int], np.ndarray]:
|
||||||
|
"""Set up correspondences for each (i1,i2) pair that violates transitivity.
|
||||||
|
|
||||||
|
(i=0, k=0) (i=0, k=1)
|
||||||
|
| \\ |
|
||||||
|
| \\ |
|
||||||
|
(i=1, k=2)--(i=2,k=3)--(i=3, k=4)
|
||||||
|
|
||||||
|
Transitivity is violated due to the match between frames 0 and 3.
|
||||||
|
"""
|
||||||
|
nontransitive_matches = {
|
||||||
|
(0, 1): np.array([[0, 2]]),
|
||||||
|
(1, 2): np.array([[2, 3]]),
|
||||||
|
(0, 2): np.array([[0, 3]]),
|
||||||
|
(0, 3): np.array([[1, 4]]),
|
||||||
|
(2, 3): np.array([[3, 4]]),
|
||||||
|
}
|
||||||
|
return nontransitive_matches
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
unittest.main()
|
unittest.main()
|
||||||
|
|
Loading…
Reference in New Issue