Reformatted with new style file, renamed some derivatives to Dcal, Dpose, Dpoint etc.

release/4.3a0
Frank Dellaert 2013-10-12 06:02:16 +00:00
parent b161a106c7
commit 1a20272fa2
3 changed files with 202 additions and 230 deletions

View File

@ -23,26 +23,27 @@ namespace gtsam {
/* ************************************************************************* */
CalibratedCamera::CalibratedCamera(const Pose3& pose) :
pose_(pose) {
pose_(pose) {
}
/* ************************************************************************* */
CalibratedCamera::CalibratedCamera(const Vector &v) : pose_(Pose3::Expmap(v)) {}
CalibratedCamera::CalibratedCamera(const Vector &v) :
pose_(Pose3::Expmap(v)) {
}
/* ************************************************************************* */
Point2 CalibratedCamera::project_to_camera(const Point3& P,
boost::optional<Matrix&> H1) {
if (H1) {
double d = 1.0 / P.z(), d2 = d * d;
*H1 = Matrix_(2, 3,
d, 0.0, -P.x() * d2,
0.0, d, -P.y() * d2);
*H1 = Matrix_(2, 3, d, 0.0, -P.x() * d2, 0.0, d, -P.y() * d2);
}
return Point2(P.x() / P.z(), P.y() / P.z());
}
/* ************************************************************************* */
Point3 CalibratedCamera::backproject_from_camera(const Point2& p, const double scale) {
Point3 CalibratedCamera::backproject_from_camera(const Point2& p,
const double scale) {
return Point3(p.x() * scale, p.y() * scale, scale);
}
@ -58,41 +59,39 @@ CalibratedCamera CalibratedCamera::Level(const Pose2& pose2, double height) {
/* ************************************************************************* */
Point2 CalibratedCamera::project(const Point3& point,
boost::optional<Matrix&> H1,
boost::optional<Matrix&> H2) const {
boost::optional<Matrix&> Dpose, boost::optional<Matrix&> Dpoint) const {
#ifdef CALIBRATEDCAMERA_CHAIN_RULE
Point3 q = pose_.transform_to(point, H1, H2);
Point3 q = pose_.transform_to(point, Dpose, Dpoint);
#else
Point3 q = pose_.transform_to(point);
#endif
Point2 intrinsic = project_to_camera(q);
// Check if point is in front of camera
if(q.z() <= 0)
if (q.z() <= 0)
throw CheiralityException();
if (H1 || H2) {
if (Dpose || Dpoint) {
#ifdef CALIBRATEDCAMERA_CHAIN_RULE
// just implement chain rule
Matrix H;
project_to_camera(q,H);
if (H1) *H1 = H * (*H1);
if (H2) *H2 = H * (*H2);
if (Dpose) *Dpose = H * (*Dpose);
if (Dpoint) *Dpoint = H * (*Dpoint);
#else
// optimized version, see CalibratedCamera.nb
const double z = q.z(), d = 1.0/z;
const double u = intrinsic.x(), v = intrinsic.y(), uv = u*v;
if (H1) *H1 = Matrix_(2,6,
uv,-(1.+u*u), v, -d , 0., d*u,
(1.+v*v), -uv,-u, 0.,-d , d*v
);
if (H2) {
const double z = q.z(), d = 1.0 / z;
const double u = intrinsic.x(), v = intrinsic.y(), uv = u * v;
if (Dpose)
*Dpose = Matrix_(2, 6, uv, -(1. + u * u), v, -d, 0., d * u, (1. + v * v),
-uv, -u, 0., -d, d * v);
if (Dpoint) {
const Matrix R(pose_.rotation().matrix());
*H2 = d * Matrix_(2,3,
R(0,0) - u*R(0,2), R(1,0) - u*R(1,2), R(2,0) - u*R(2,2),
R(0,1) - v*R(0,2), R(1,1) - v*R(1,2), R(2,1) - v*R(2,2)
);
*Dpoint = d
* Matrix_(2, 3, R(0, 0) - u * R(0, 2), R(1, 0) - u * R(1, 2),
R(2, 0) - u * R(2, 2), R(0, 1) - v * R(0, 2),
R(1, 1) - v * R(1, 2), R(2, 1) - v * R(2, 2));
}
#endif
}
@ -101,12 +100,12 @@ Point2 CalibratedCamera::project(const Point3& point,
/* ************************************************************************* */
CalibratedCamera CalibratedCamera::retract(const Vector& d) const {
return CalibratedCamera(pose().retract(d)) ;
return CalibratedCamera(pose().retract(d));
}
/* ************************************************************************* */
Vector CalibratedCamera::localCoordinates(const CalibratedCamera& T2) const {
return pose().localCoordinates(T2.pose()) ;
return pose().localCoordinates(T2.pose());
}
/* ************************************************************************* */

View File

@ -24,192 +24,202 @@
namespace gtsam {
class GTSAM_EXPORT CheiralityException: public ThreadsafeException<CheiralityException> {
public:
CheiralityException() : ThreadsafeException<CheiralityException>("Cheirality Exception") {}
};
class GTSAM_EXPORT CheiralityException: public ThreadsafeException<
CheiralityException> {
public:
CheiralityException() :
ThreadsafeException<CheiralityException>("Cheirality Exception") {
}
};
/**
* A Calibrated camera class [R|-R't], calibration K=I.
* If calibration is known, it is more computationally efficient
* to calibrate the measurements rather than try to predict in pixels.
* @addtogroup geometry
* \nosubgrouping
*/
class GTSAM_EXPORT CalibratedCamera: public DerivedValue<CalibratedCamera> {
private:
Pose3 pose_; // 6DOF pose
public:
/// @name Standard Constructors
/// @{
/// default constructor
CalibratedCamera() {
}
/// construct with pose
explicit CalibratedCamera(const Pose3& pose);
/// @}
/// @name Advanced Constructors
/// @{
/// construct from vector
explicit CalibratedCamera(const Vector &v);
/// @}
/// @name Testable
/// @{
virtual void print(const std::string& s = "") const {
pose_.print(s);
}
/// check equality to another camera
bool equals(const CalibratedCamera &camera, double tol = 1e-9) const {
return pose_.equals(camera.pose(), tol);
}
/// @}
/// @name Standard Interface
/// @{
/// destructor
virtual ~CalibratedCamera() {
}
/// return pose
inline const Pose3& pose() const {
return pose_;
}
/// compose the two camera poses: TODO Frank says this might not make sense
inline const CalibratedCamera compose(const CalibratedCamera &c,
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 =
boost::none) const {
return CalibratedCamera(pose_.compose(c.pose(), H1, H2));
}
/// between the two camera poses: TODO Frank says this might not make sense
inline const CalibratedCamera between(const CalibratedCamera& c,
boost::optional<Matrix&> H1 = boost::none, boost::optional<Matrix&> H2 =
boost::none) const {
return CalibratedCamera(pose_.between(c.pose(), H1, H2));
}
/// invert the camera pose: TODO Frank says this might not make sense
inline const CalibratedCamera inverse(boost::optional<Matrix&> H1 =
boost::none) const {
return CalibratedCamera(pose_.inverse(H1));
}
/**
* A Calibrated camera class [R|-R't], calibration K=I.
* If calibration is known, it is more computationally efficient
* to calibrate the measurements rather than try to predict in pixels.
* @addtogroup geometry
* \nosubgrouping
* Create a level camera at the given 2D pose and height
* @param pose2 specifies the location and viewing direction
* @param height specifies the height of the camera (along the positive Z-axis)
* (theta 0 = looking in direction of positive X axis)
*/
class GTSAM_EXPORT CalibratedCamera : public DerivedValue<CalibratedCamera> {
private:
Pose3 pose_; // 6DOF pose
static CalibratedCamera Level(const Pose2& pose2, double height);
public:
/// @}
/// @name Manifold
/// @{
/// @name Standard Constructors
/// @{
/// move a cameras pose according to d
CalibratedCamera retract(const Vector& d) const;
/// default constructor
CalibratedCamera() {}
/// Return canonical coordinate
Vector localCoordinates(const CalibratedCamera& T2) const;
/// construct with pose
explicit CalibratedCamera(const Pose3& pose);
/// Lie group dimensionality
inline size_t dim() const {
return 6;
}
/// @}
/// @name Advanced Constructors
/// @{
/// Lie group dimensionality
inline static size_t Dim() {
return 6;
}
/// construct from vector
explicit CalibratedCamera(const Vector &v);
/* ************************************************************************* */
// measurement functions and derivatives
/* ************************************************************************* */
/// @}
/// @name Testable
/// @{
/// @}
/// @name Transformations and mesaurement functions
/// @{
/**
* This function receives the camera pose and the landmark location and
* returns the location the point is supposed to appear in the image
* @param point a 3D point to be projected
* @param Dpose the optionally computed Jacobian with respect to pose
* @param Dpoint the optionally computed Jacobian with respect to the 3D point
* @return the intrinsic coordinates of the projected point
*/
Point2 project(const Point3& point,
boost::optional<Matrix&> Dpose = boost::none,
boost::optional<Matrix&> Dpoint = boost::none) const;
virtual void print(const std::string& s = "") const {
pose_.print(s);
}
/**
* projects a 3-dimensional point in camera coordinates into the
* camera and returns a 2-dimensional point, no calibration applied
* With optional 2by3 derivative
*/
static Point2 project_to_camera(const Point3& cameraPoint,
boost::optional<Matrix&> H1 = boost::none);
/// check equality to another camera
bool equals (const CalibratedCamera &camera, double tol = 1e-9) const {
return pose_.equals(camera.pose(), tol) ;
}
/**
* backproject a 2-dimensional point to a 3-dimension point
*/
static Point3 backproject_from_camera(const Point2& p, const double scale);
/// @}
/// @name Standard Interface
/// @{
/**
* Calculate range to a landmark
* @param point 3D location of landmark
* @param H1 optionally computed Jacobian with respect to pose
* @param H2 optionally computed Jacobian with respect to the 3D point
* @return range (double)
*/
double range(const Point3& point, boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none) const {
return pose_.range(point, H1, H2);
}
/// destructor
virtual ~CalibratedCamera() {}
/**
* Calculate range to another pose
* @param pose Other SO(3) pose
* @param H1 optionally computed Jacobian with respect to pose
* @param H2 optionally computed Jacobian with respect to the 3D point
* @return range (double)
*/
double range(const Pose3& pose, boost::optional<Matrix&> H1 = boost::none,
boost::optional<Matrix&> H2 = boost::none) const {
return pose_.range(pose, H1, H2);
}
/// return pose
inline const Pose3& pose() const { return pose_; }
/// compose the two camera poses: TODO Frank says this might not make sense
inline const CalibratedCamera compose(const CalibratedCamera &c,
boost::optional<Matrix&> H1=boost::none,
boost::optional<Matrix&> H2=boost::none) const {
return CalibratedCamera( pose_.compose(c.pose(), H1, H2) );
}
/// between the two camera poses: TODO Frank says this might not make sense
inline const CalibratedCamera between(const CalibratedCamera& c,
boost::optional<Matrix&> H1=boost::none,
boost::optional<Matrix&> H2=boost::none) const {
return CalibratedCamera( pose_.between(c.pose(), H1, H2) );
}
/// invert the camera pose: TODO Frank says this might not make sense
inline const CalibratedCamera inverse(boost::optional<Matrix&> H1=boost::none) const {
return CalibratedCamera( pose_.inverse(H1) );
}
/**
* Create a level camera at the given 2D pose and height
* @param pose2 specifies the location and viewing direction
* @param height specifies the height of the camera (along the positive Z-axis)
* (theta 0 = looking in direction of positive X axis)
*/
static CalibratedCamera Level(const Pose2& pose2, double height);
/// @}
/// @name Manifold
/// @{
/// move a cameras pose according to d
CalibratedCamera retract(const Vector& d) const;
/// Return canonical coordinate
Vector localCoordinates(const CalibratedCamera& T2) const;
/// Lie group dimensionality
inline size_t dim() const { return 6 ; }
/// Lie group dimensionality
inline static size_t Dim() { return 6 ; }
/* ************************************************************************* */
// measurement functions and derivatives
/* ************************************************************************* */
/// @}
/// @name Transformations and mesaurement functions
/// @{
/**
* This function receives the camera pose and the landmark location and
* returns the location the point is supposed to appear in the image
* @param point a 3D point to be projected
* @param D_intrinsic_pose the optionally computed Jacobian with respect to pose
* @param D_intrinsic_point the optionally computed Jacobian with respect to the 3D point
* @return the intrinsic coordinates of the projected point
*/
Point2 project(const Point3& point,
boost::optional<Matrix&> D_intrinsic_pose = boost::none,
boost::optional<Matrix&> D_intrinsic_point = boost::none) const;
/**
* projects a 3-dimensional point in camera coordinates into the
* camera and returns a 2-dimensional point, no calibration applied
* With optional 2by3 derivative
*/
static Point2 project_to_camera(const Point3& cameraPoint,
boost::optional<Matrix&> H1 = boost::none);
/**
* backproject a 2-dimensional point to a 3-dimension point
*/
static Point3 backproject_from_camera(const Point2& p, const double scale);
/**
* Calculate range to a landmark
* @param point 3D location of landmark
* @param H1 optionally computed Jacobian with respect to pose
* @param H2 optionally computed Jacobian with respect to the 3D point
* @return range (double)
*/
double range(const Point3& point,
boost::optional<Matrix&> H1=boost::none,
boost::optional<Matrix&> H2=boost::none) const {
return pose_.range(point, H1, H2); }
/**
* Calculate range to another pose
* @param pose Other SO(3) pose
* @param H1 optionally computed Jacobian with respect to pose
* @param H2 optionally computed Jacobian with respect to the 3D point
* @return range (double)
*/
double range(const Pose3& pose,
boost::optional<Matrix&> H1=boost::none,
boost::optional<Matrix&> H2=boost::none) const {
return pose_.range(pose, H1, H2); }
/**
* Calculate range to another camera
* @param camera Other camera
* @param H1 optionally computed Jacobian with respect to pose
* @param H2 optionally computed Jacobian with respect to the 3D point
* @return range (double)
*/
double range(const CalibratedCamera& camera,
boost::optional<Matrix&> H1=boost::none,
boost::optional<Matrix&> H2=boost::none) const {
return pose_.range(camera.pose_, H1, H2); }
/**
* Calculate range to another camera
* @param camera Other camera
* @param H1 optionally computed Jacobian with respect to pose
* @param H2 optionally computed Jacobian with respect to the 3D point
* @return range (double)
*/
double range(const CalibratedCamera& camera, boost::optional<Matrix&> H1 =
boost::none, boost::optional<Matrix&> H2 = boost::none) const {
return pose_.range(camera.pose_, H1, H2);
}
private:
/// @}
/// @name Advanced Interface
/// @{
/// @}
/// @name Advanced Interface
/// @{
/** Serialization function */
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int version) {
ar & boost::serialization::make_nvp("CalibratedCamera",
/** Serialization function */
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int version) {
ar
& boost::serialization::make_nvp("CalibratedCamera",
boost::serialization::base_object<Value>(*this));
ar & BOOST_SERIALIZATION_NVP(pose_);
}
ar & BOOST_SERIALIZATION_NVP(pose_);
}
/// @}
};
}
/// @}
};}

View File

@ -37,43 +37,6 @@ int main()
const CalibratedCamera camera(pose1);
const Point3 point1(-0.08,-0.08, 0.0);
/**
* NOTE: because we only have combined derivative functions now,
* parts of this test are no longer useful.
*/
// Aug 8, iMac 3.06GHz Core i3
// 378870 calls/second
// 2.63943 musecs/call
// AFTER collapse:
// 1.57399e+06 calls/second
// 0.63533 musecs/call
// {
// Matrix computed;
// long timeLog = clock();
// for(int i = 0; i < n; i++)
// computed = Dproject_pose(camera, point1);
// long timeLog2 = clock();
// double seconds = (double)(timeLog2-timeLog)/CLOCKS_PER_SEC;
// cout << ((double)n/seconds) << " calls/second" << endl;
// cout << ((double)seconds*1000000/n) << " musecs/call" << endl;
// }
// Aug 8, iMac 3.06GHz Core i3
// AFTER collapse:
// 1.55383e+06 calls/second
// 0.64357 musecs/call
// {
// Matrix computed;
// long timeLog = clock();
// for(int i = 0; i < n; i++)
// computed = Dproject_point(camera, point1);
// long timeLog2 = clock();
// double seconds = (double)(timeLog2-timeLog)/CLOCKS_PER_SEC;
// cout << ((double)n/seconds) << " calls/second" << endl;
// cout << ((double)seconds*1000000/n) << " musecs/call" << endl;
// }
// Aug 8, iMac 3.06GHz Core i3
// 371153 calls/second
// 2.69431 musecs/call