Second draft of the BAD implementation
parent
b47837462e
commit
1a00d7e3d9
|
@ -30,14 +30,30 @@
|
||||||
|
|
||||||
namespace gtsam {
|
namespace gtsam {
|
||||||
|
|
||||||
//-----------------------------------------------------------------------------
|
///-----------------------------------------------------------------------------
|
||||||
|
/// Expression node. The superclass for objects that do the heavy lifting
|
||||||
|
/// An Expression<T> has a pointer to an ExpressionNode<T> underneath
|
||||||
|
/// allowing Expressions to have polymorphic behaviour even though they
|
||||||
|
/// are passed by value. This is the same way boost::function works.
|
||||||
|
/// http://loki-lib.sourceforge.net/html/a00652.html
|
||||||
|
template<class T>
|
||||||
|
class ExpressionNode {
|
||||||
|
public:
|
||||||
|
ExpressionNode(){}
|
||||||
|
virtual ~ExpressionNode(){}
|
||||||
|
virtual void getKeys(std::set<Key>& keys) const = 0;
|
||||||
|
virtual T value(const Values& values,
|
||||||
|
boost::optional<std::map<Key, Matrix>&> = boost::none) const = 0;
|
||||||
|
virtual ExpressionNode<T>* clone() const = 0;
|
||||||
|
};
|
||||||
|
|
||||||
/// Constant Expression
|
/// Constant Expression
|
||||||
template<class T>
|
template<class T>
|
||||||
class ConstantExpression {
|
class ConstantExpression : public ExpressionNode<T> {
|
||||||
|
|
||||||
T value_;
|
T value_;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
typedef T type;
|
typedef T type;
|
||||||
|
|
||||||
|
@ -45,27 +61,24 @@ public:
|
||||||
ConstantExpression(const T& value) :
|
ConstantExpression(const T& value) :
|
||||||
value_(value) {
|
value_(value) {
|
||||||
}
|
}
|
||||||
|
virtual ~ConstantExpression(){}
|
||||||
|
|
||||||
/// The value is just the stored constant
|
virtual void getKeys(std::set<Key>& /* keys */) const {}
|
||||||
T value(const Values& values) const {
|
virtual T value(const Values& values,
|
||||||
|
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
|
||||||
return value_;
|
return value_;
|
||||||
}
|
}
|
||||||
|
virtual ExpressionNode<T>* clone() const { return new ConstantExpression(*this); }
|
||||||
/// A constant does not have a Jacobian
|
|
||||||
std::map<Key, Matrix> jacobians(const Values& values) const {
|
|
||||||
std::map<Key, Matrix> terms;
|
|
||||||
return terms;
|
|
||||||
}
|
|
||||||
};
|
};
|
||||||
|
|
||||||
//-----------------------------------------------------------------------------
|
//-----------------------------------------------------------------------------
|
||||||
/// Leaf Expression
|
/// Leaf Expression
|
||||||
template<class T>
|
template<class T>
|
||||||
class LeafExpression {
|
class LeafExpression : public ExpressionNode<T> {
|
||||||
|
|
||||||
Key key_;
|
Key key_;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
typedef T type;
|
typedef T type;
|
||||||
|
|
||||||
|
@ -73,111 +86,182 @@ public:
|
||||||
LeafExpression(Key key) :
|
LeafExpression(Key key) :
|
||||||
key_(key) {
|
key_(key) {
|
||||||
}
|
}
|
||||||
|
virtual ~LeafExpression(){}
|
||||||
|
|
||||||
/// The value of a leaf is just a lookup in values
|
virtual void getKeys(std::set<Key>& keys) const { keys.insert(key_); }
|
||||||
T value(const Values& values) const {
|
virtual T value(const Values& values,
|
||||||
return values.at<T>(key_);
|
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
|
||||||
}
|
|
||||||
|
|
||||||
/// There is only a single identity Jacobian in a leaf
|
|
||||||
std::map<Key, Matrix> jacobians(const Values& values) const {
|
|
||||||
std::map<Key, Matrix> terms;
|
|
||||||
const T& value = values.at<T>(key_);
|
const T& value = values.at<T>(key_);
|
||||||
terms[key_] = eye(value.dim());
|
if( jacobians ) {
|
||||||
return terms;
|
std::map<Key, Matrix>::iterator it = jacobians->find(key_);
|
||||||
|
if(it != jacobians->end()) {
|
||||||
|
it->second += Eigen::MatrixXd::Identity(value.dim(), value.dim());
|
||||||
|
} else {
|
||||||
|
(*jacobians)[key_] = Eigen::MatrixXd::Identity(value.dim(), value.dim());
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
return value;
|
||||||
|
}
|
||||||
|
|
||||||
|
virtual ExpressionNode<T>* clone() const { return new LeafExpression(*this); }
|
||||||
};
|
};
|
||||||
|
|
||||||
//-----------------------------------------------------------------------------
|
//-----------------------------------------------------------------------------
|
||||||
/// Unary Expression
|
/// Unary Expression
|
||||||
template<class T, class E>
|
template<class T, class E>
|
||||||
class UnaryExpression {
|
class UnaryExpression : public ExpressionNode<T> {
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
typedef T (*function)(const typename E::type&, boost::optional<Matrix&>);
|
typedef T (*function)(const E&, boost::optional<Matrix&>);
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
|
||||||
const E expression_;
|
boost::shared_ptr< ExpressionNode<E> > expression_;
|
||||||
function f_;
|
function f_;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
typedef T type;
|
typedef T type;
|
||||||
|
|
||||||
/// Constructor with a single key
|
/// Constructor with a single key
|
||||||
UnaryExpression(function f, const E& expression) :
|
UnaryExpression(function f, const ExpressionNode<E>& expression) :
|
||||||
expression_(expression), f_(f) {
|
expression_(expression.clone()), f_(f) {
|
||||||
|
}
|
||||||
|
virtual ~UnaryExpression(){}
|
||||||
|
|
||||||
|
virtual void getKeys(std::set<Key>& keys) const{ expression_->getKeys(keys); }
|
||||||
|
virtual T value(const Values& values,
|
||||||
|
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
|
||||||
|
|
||||||
|
T value;
|
||||||
|
if(jacobians) {
|
||||||
|
Eigen::MatrixXd H;
|
||||||
|
value = f_(expression_->value(values, jacobians), H);
|
||||||
|
std::map<Key, Matrix>::iterator it = jacobians->begin();
|
||||||
|
for( ; it != jacobians->end(); ++it) {
|
||||||
|
it->second = H * it->second;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
value = f_(expression_->value(values), boost::none);
|
||||||
|
}
|
||||||
|
return value;
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Evaluate the values of the subtree and call unary function on result
|
virtual ExpressionNode<T>* clone() const { return new UnaryExpression(*this); }
|
||||||
T value(const Values& values) const {
|
|
||||||
return f_(expression_.value(values), boost::none);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Get the Jacobians from the subtree and apply the chain rule
|
|
||||||
std::map<Key, Matrix> jacobians(const Values& values) const {
|
|
||||||
std::map<Key, Matrix> terms = expression_.jacobians(values);
|
|
||||||
Matrix H;
|
|
||||||
// TODO, wasted value calculation, create a combined call
|
|
||||||
f_(expression_.value(values), H);
|
|
||||||
typedef std::pair<Key, Matrix> Pair;
|
|
||||||
BOOST_FOREACH(const Pair& term, terms)
|
|
||||||
terms[term.first] = H * term.second;
|
|
||||||
return terms;
|
|
||||||
}
|
|
||||||
};
|
};
|
||||||
|
|
||||||
//-----------------------------------------------------------------------------
|
//-----------------------------------------------------------------------------
|
||||||
/// Binary Expression
|
/// Binary Expression
|
||||||
|
|
||||||
template<class T, class E1, class E2>
|
template<class T, class E1, class E2>
|
||||||
class BinaryExpression {
|
class BinaryExpression : public ExpressionNode<T> {
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
typedef T (*function)(const typename E1::type&, const typename E2::type&,
|
typedef T (*function)(const E1&, const E2&,
|
||||||
boost::optional<Matrix&>, boost::optional<Matrix&>);
|
boost::optional<Matrix&>, boost::optional<Matrix&>);
|
||||||
|
|
||||||
private:
|
private:
|
||||||
|
|
||||||
const E1 expression1_;
|
boost::shared_ptr< ExpressionNode<E1> > expression1_;
|
||||||
const E2 expression2_;
|
boost::shared_ptr< ExpressionNode<E2> > expression2_;
|
||||||
function f_;
|
function f_;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
typedef T type;
|
typedef T type;
|
||||||
|
|
||||||
/// Constructor with a single key
|
/// Constructor with a single key
|
||||||
BinaryExpression(function f, const E1& expression1, const E2& expression2) :
|
BinaryExpression(function f, const ExpressionNode<E1>& expression1, const ExpressionNode<E2>& expression2) :
|
||||||
expression1_(expression1), expression2_(expression2), f_(f) {
|
expression1_(expression1.clone()), expression2_(expression2.clone()), f_(f) {
|
||||||
}
|
}
|
||||||
|
virtual ~BinaryExpression(){}
|
||||||
|
|
||||||
/// Evaluate the values of the subtrees and call binary function on result
|
virtual void getKeys(std::set<Key>& keys) const{
|
||||||
T value(const Values& values) const {
|
expression1_->getKeys(keys);
|
||||||
return f_(expression1_.value(values), expression2_.value(values),
|
expression2_->getKeys(keys);
|
||||||
|
}
|
||||||
|
virtual T value(const Values& values,
|
||||||
|
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
|
||||||
|
T val;
|
||||||
|
if(jacobians) {
|
||||||
|
std::map<Key, Matrix> terms1;
|
||||||
|
std::map<Key, Matrix> terms2;
|
||||||
|
Matrix H1, H2;
|
||||||
|
val = f_(expression1_->value(values, terms1), expression2_->value(values, terms2), H1, H2);
|
||||||
|
// TODO: both Jacobians and terms are sorted. There must be a simple
|
||||||
|
// but fast algorithm that does this.
|
||||||
|
typedef std::pair<Key, Matrix> Pair;
|
||||||
|
BOOST_FOREACH(const Pair& term, terms1) {
|
||||||
|
std::map<Key, Matrix>::iterator it = jacobians->find(term.first);
|
||||||
|
if(it != jacobians->end()) {
|
||||||
|
it->second += H1 * term.second;
|
||||||
|
} else {
|
||||||
|
(*jacobians)[term.first] = H1 * term.second;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
BOOST_FOREACH(const Pair& term, terms2) {
|
||||||
|
std::map<Key, Matrix>::iterator it = jacobians->find(term.first);
|
||||||
|
if(it != jacobians->end()) {
|
||||||
|
it->second += H2 * term.second;
|
||||||
|
} else {
|
||||||
|
(*jacobians)[term.first] = H2 * term.second;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
val = f_(expression1_->value(values), expression2_->value(values),
|
||||||
boost::none, boost::none);
|
boost::none, boost::none);
|
||||||
}
|
}
|
||||||
|
return val;
|
||||||
/// Get the Jacobians from the subtrees and apply the chain rule
|
|
||||||
std::map<Key, Matrix> jacobians(const Values& values) const {
|
|
||||||
std::map<Key, Matrix> terms1 = expression1_.jacobians(values);
|
|
||||||
std::map<Key, Matrix> terms2 = expression2_.jacobians(values);
|
|
||||||
Matrix H1, H2;
|
|
||||||
// TODO, wasted value calculation, create a combined call
|
|
||||||
f_(expression1_.value(values), expression2_.value(values), H1, H2);
|
|
||||||
std::map<Key, Matrix> terms;
|
|
||||||
// TODO if Key already exists, add !
|
|
||||||
typedef std::pair<Key, Matrix> Pair;
|
|
||||||
BOOST_FOREACH(const Pair& term, terms1)
|
|
||||||
terms[term.first] = H1 * term.second;
|
|
||||||
BOOST_FOREACH(const Pair& term, terms2)
|
|
||||||
terms[term.first] = H2 * term.second;
|
|
||||||
return terms;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
virtual ExpressionNode<T>* clone() const { return new BinaryExpression(*this); }
|
||||||
};
|
};
|
||||||
|
|
||||||
|
template<typename T>
|
||||||
|
class Expression {
|
||||||
|
public:
|
||||||
|
Expression(const ExpressionNode<T>& root) {
|
||||||
|
root_.reset(root.clone());
|
||||||
|
}
|
||||||
|
|
||||||
|
// Initialize a constant expression
|
||||||
|
Expression(const T& value) :
|
||||||
|
root_(new ConstantExpression<T>(value)){ }
|
||||||
|
|
||||||
|
// Initialize a leaf expression
|
||||||
|
Expression(const Key& key) :
|
||||||
|
root_(new LeafExpression<T>(key)) {}
|
||||||
|
|
||||||
|
/// Initialize a unary expression
|
||||||
|
template<typename E>
|
||||||
|
Expression(typename UnaryExpression<T,E>::function f,
|
||||||
|
const Expression<E>& expression) {
|
||||||
|
// TODO Assert that root of expression is not null.
|
||||||
|
root_.reset(new UnaryExpression<T,E>(f, *expression.root()));
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Initialize a binary expression
|
||||||
|
template<typename E1, typename E2>
|
||||||
|
Expression(typename BinaryExpression<T,E1,E2>::function f,
|
||||||
|
const Expression<E1>& expression1,
|
||||||
|
const Expression<E2>& expression2) {
|
||||||
|
// TODO Assert that root of expressions 1 and 2 are not null.
|
||||||
|
root_.reset(new BinaryExpression<T,E1,E2>(f, *expression1.root(),
|
||||||
|
*expression2.root()));
|
||||||
|
}
|
||||||
|
|
||||||
|
void getKeys(std::set<Key>& keys) const { root_->getKeys(); }
|
||||||
|
T value(const Values& values,
|
||||||
|
boost::optional<std::map<Key, Matrix>&> jacobians = boost::none) const {
|
||||||
|
return root_->value(values, jacobians);
|
||||||
|
}
|
||||||
|
|
||||||
|
const boost::shared_ptr<ExpressionNode<T> >& root() const{ return root_; }
|
||||||
|
private:
|
||||||
|
boost::shared_ptr<ExpressionNode<T> > root_;
|
||||||
|
};
|
||||||
//-----------------------------------------------------------------------------
|
//-----------------------------------------------------------------------------
|
||||||
|
|
||||||
void printPair(std::pair<Key, Matrix> pair) {
|
void printPair(std::pair<Key, Matrix> pair) {
|
||||||
|
@ -187,11 +271,11 @@ void printPair(std::pair<Key, Matrix> pair) {
|
||||||
|
|
||||||
//-----------------------------------------------------------------------------
|
//-----------------------------------------------------------------------------
|
||||||
/// AD Factor
|
/// AD Factor
|
||||||
template<class T, class E>
|
template<class T>
|
||||||
class BADFactor: NonlinearFactor {
|
class BADFactor: NonlinearFactor {
|
||||||
|
|
||||||
const T measurement_;
|
const T measurement_;
|
||||||
const E expression_;
|
const Expression<T> expression_;
|
||||||
|
|
||||||
/// get value from expression and calculate error with respect to measurement
|
/// get value from expression and calculate error with respect to measurement
|
||||||
Vector unwhitenedError(const Values& values) const {
|
Vector unwhitenedError(const Values& values) const {
|
||||||
|
@ -199,13 +283,16 @@ class BADFactor: NonlinearFactor {
|
||||||
return value.localCoordinates(measurement_);
|
return value.localCoordinates(measurement_);
|
||||||
}
|
}
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
|
||||||
/// Constructor
|
/// Constructor
|
||||||
BADFactor(const T& measurement, const E& expression) :
|
BADFactor(const T& measurement, const Expression<T>& expression) :
|
||||||
|
measurement_(measurement), expression_(expression) {
|
||||||
|
}
|
||||||
|
/// Constructor
|
||||||
|
BADFactor(const T& measurement, const ExpressionNode<T>& expression) :
|
||||||
measurement_(measurement), expression_(expression) {
|
measurement_(measurement), expression_(expression) {
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Calculate the error of the factor.
|
* Calculate the error of the factor.
|
||||||
* This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian.
|
* This is the log-likelihood, e.g. \f$ 0.5(h(x)-z)^2/\sigma^2 \f$ in case of Gaussian.
|
||||||
|
@ -231,7 +318,8 @@ public:
|
||||||
// We will construct an n-ary factor below, where terms is a container whose
|
// We will construct an n-ary factor below, where terms is a container whose
|
||||||
// value type is std::pair<Key, Matrix>, specifying the
|
// value type is std::pair<Key, Matrix>, specifying the
|
||||||
// collection of keys and matrices making up the factor.
|
// collection of keys and matrices making up the factor.
|
||||||
std::map<Key, Matrix> terms = expression_.jacobians(values);
|
std::map<Key, Matrix> terms;
|
||||||
|
expression_.value(values, terms);
|
||||||
Vector b = unwhitenedError(values);
|
Vector b = unwhitenedError(values);
|
||||||
SharedDiagonal model = SharedDiagonal();
|
SharedDiagonal model = SharedDiagonal();
|
||||||
return boost::shared_ptr<JacobianFactor>(
|
return boost::shared_ptr<JacobianFactor>(
|
||||||
|
@ -279,22 +367,19 @@ TEST(BAD, test) {
|
||||||
GaussianFactor::shared_ptr expected = old.linearize(values);
|
GaussianFactor::shared_ptr expected = old.linearize(values);
|
||||||
|
|
||||||
// Create leaves
|
// Create leaves
|
||||||
LeafExpression<Pose3> x(1);
|
Expression<Pose3> x(1);
|
||||||
LeafExpression<Point3> p(2);
|
Expression<Point3> p(2);
|
||||||
LeafExpression<Cal3_S2> K(3);
|
Expression<Cal3_S2> K(3);
|
||||||
|
|
||||||
// Create expression tree
|
// Create expression tree
|
||||||
typedef BinaryExpression<Point3, LeafExpression<Pose3>, LeafExpression<Point3> > Binary1;
|
Expression<Point3> p_cam(transformTo, x, p);
|
||||||
Binary1 p_cam(transformTo, x, p);
|
|
||||||
|
|
||||||
typedef UnaryExpression<Point2, Binary1> Unary1;
|
Expression<Point2> projection(project, p_cam);
|
||||||
Unary1 projection(project, p_cam);
|
|
||||||
|
|
||||||
typedef BinaryExpression<Point2, LeafExpression<Cal3_S2>, Unary1> Binary2;
|
Expression<Point2> uv_hat(uncalibrate, K, projection);
|
||||||
Binary2 uv_hat(uncalibrate, K, projection);
|
|
||||||
|
|
||||||
// Create factor
|
// Create factor
|
||||||
BADFactor<Point2, Binary2> f(measured, uv_hat);
|
BADFactor<Point2> f(measured, uv_hat);
|
||||||
|
|
||||||
// Check value
|
// Check value
|
||||||
EXPECT_DOUBLES_EQUAL(expected_error, f.error(values), 1e-9);
|
EXPECT_DOUBLES_EQUAL(expected_error, f.error(values), 1e-9);
|
||||||
|
@ -305,6 +390,7 @@ TEST(BAD, test) {
|
||||||
// Check linearization
|
// Check linearization
|
||||||
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
|
boost::shared_ptr<GaussianFactor> gf = f.linearize(values);
|
||||||
EXPECT( assert_equal(*expected, *gf, 1e-9));
|
EXPECT( assert_equal(*expected, *gf, 1e-9));
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
|
|
Loading…
Reference in New Issue