Changed TangentVectorValues test
parent
491405a5f1
commit
1980dcf1f5
|
|
@ -121,18 +121,17 @@ TEST(ShonanAveraging3, tryOptimizingAt4) {
|
|||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST(ShonanAveraging3, MakeATangentVectorValues) {
|
||||
TEST(ShonanAveraging3, TangentVectorValues) {
|
||||
Vector9 v;
|
||||
v << 1, 2, 3, 4, 5, 6, 7, 8, 9;
|
||||
Matrix expected(5, 5);
|
||||
expected << 0, 0, 0, 0, -4, //
|
||||
0, 0, 0, 0, -5, //
|
||||
0, 0, 0, 0, -6, //
|
||||
0, 0, 0, 0, 0, //
|
||||
4, 5, 6, 0, 0;
|
||||
const VectorValues delta = ShonanAveraging3::MakeATangentVectorValues(5, v);
|
||||
const auto actual = SOn::Hat(delta[1]);
|
||||
CHECK(assert_equal(expected, actual));
|
||||
Vector expected0(10), expected1(10), expected2(10);
|
||||
expected0 << 0, 3, -2, 1, 0, 0, 0, 0, 0, 0;
|
||||
expected1 << 0, 6, -5, 4, 0, 0, 0, 0, 0, 0;
|
||||
expected2 << 0, 9, -8, 7, 0, 0, 0, 0, 0, 0;
|
||||
const VectorValues xi = ShonanAveraging3::TangentVectorValues(5, v);
|
||||
EXPECT(assert_equal(expected0, xi[0]));
|
||||
EXPECT(assert_equal(expected1, xi[1]));
|
||||
EXPECT(assert_equal(expected2, xi[2]));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
|
@ -158,17 +157,18 @@ TEST(ShonanAveraging3, CheckWithEigen) {
|
|||
double lambda = kShonan.computeMinEigenValue(Qstar3);
|
||||
|
||||
// Check Eigenvalue with slow Eigen version, converts matrix A to dense matrix!
|
||||
// const Matrix S = ShonanAveraging3::StiefelElementMatrix(Qstar3);
|
||||
// auto A = kShonan.computeA(S);
|
||||
// bool computeEigenvectors = false;
|
||||
// Eigen::EigenSolver<Matrix> eigenSolver(Matrix(A), computeEigenvectors);
|
||||
// auto lambdas = eigenSolver.eigenvalues().real();
|
||||
// double minEigenValue = lambdas(0);
|
||||
// for (int i = 1; i < lambdas.size(); i++)
|
||||
// minEigenValue = min(lambdas(i), minEigenValue);
|
||||
const Matrix S = ShonanAveraging3::StiefelElementMatrix(Qstar3);
|
||||
auto A = kShonan.computeA(S);
|
||||
bool computeEigenvectors = false;
|
||||
Eigen::EigenSolver<Matrix> eigenSolver(Matrix(A), computeEigenvectors);
|
||||
auto lambdas = eigenSolver.eigenvalues().real();
|
||||
double minEigenValue = lambdas(0);
|
||||
for (int i = 1; i < lambdas.size(); i++)
|
||||
minEigenValue = min(lambdas(i), minEigenValue);
|
||||
|
||||
// Actual check
|
||||
EXPECT_DOUBLES_EQUAL(0, lambda, 1e-11);
|
||||
EXPECT_DOUBLES_EQUAL(0, minEigenValue, 1e-11);
|
||||
|
||||
// Construct test descent direction (as minEigenVector is not predictable
|
||||
// across platforms, being one from a basically flat 3d- subspace)
|
||||
|
|
|
|||
Loading…
Reference in New Issue