Recalculate now removes top

release/4.3a0
Frank Dellaert 2019-06-03 14:30:00 -04:00
parent 6f7e92afdc
commit 18553feb03
3 changed files with 59 additions and 64 deletions

View File

@ -187,9 +187,9 @@ struct GTSAM_EXPORT UpdateImpl {
// Calculate nonlinear error
void error(const NonlinearFactorGraph& nonlinearFactors,
const Values& estimate, boost::optional<double>* error) const {
const Values& estimate, boost::optional<double>* result) const {
gttic(error);
error->reset(nonlinearFactors.error(estimate));
result->reset(nonlinearFactors.error(estimate));
}
// Mark linear update

View File

@ -296,54 +296,64 @@ void ISAM2::recalculateIncremental(const ISAM2UpdateParams& updateParams,
}
/* ************************************************************************* */
KeySet ISAM2::recalculate(const ISAM2UpdateParams& updateParams,
const GaussianBayesNet& affectedBayesNet,
const KeySet& relinKeys, Cliques* orphans,
ISAM2Result* result) {
void ISAM2::recalculate(const ISAM2UpdateParams& updateParams,
const KeySet& relinKeys, ISAM2Result* result) {
gttic(recalculate);
UpdateImpl::LogRecalculateKeys(*result);
// FactorGraph<GaussianFactor> factors(affectedBayesNet);
// bug was here: we cannot reuse the original factors, because then the
// cached factors get messed up [all the necessary data is actually
// contained in the affectedBayesNet, including what was passed in from the
// boundaries, so this would be correct; however, in the process we also
// generate new cached_ entries that will be wrong (ie. they don't contain
// what would be passed up at a certain point if batch elimination was done,
// but that's what we need); we could choose not to update cached_ from
// here, but then the new information (and potentially different variable
// ordering) is not reflected in the cached_ values which again will be
// wrong] so instead we have to retrieve the original linearized factors AND
// add the cached factors from the boundary
if (!result->markedKeys.empty() || !result->observedKeys.empty()) {
// Remove top of Bayes tree and convert to a factor graph:
// (a) For each affected variable, remove the corresponding clique and all
// parents up to the root. (b) Store orphaned sub-trees \BayesTree_{O} of
// removed cliques.
GaussianBayesNet affectedBayesNet;
Cliques orphans;
this->removeTop(
KeyVector(result->markedKeys.begin(), result->markedKeys.end()),
&affectedBayesNet, &orphans);
// ordering provides all keys in conditionals, there cannot be others
// because path to root included
gttic(affectedKeys);
FastList<Key> affectedKeys;
for (const auto& conditional : affectedBayesNet)
affectedKeys.insert(affectedKeys.end(), conditional->beginFrontals(),
conditional->endFrontals());
gttoc(affectedKeys);
// FactorGraph<GaussianFactor> factors(affectedBayesNet);
// bug was here: we cannot reuse the original factors, because then the
// cached factors get messed up [all the necessary data is actually
// contained in the affectedBayesNet, including what was passed in from the
// boundaries, so this would be correct; however, in the process we also
// generate new cached_ entries that will be wrong (ie. they don't contain
// what would be passed up at a certain point if batch elimination was done,
// but that's what we need); we could choose not to update cached_ from
// here, but then the new information (and potentially different variable
// ordering) is not reflected in the cached_ values which again will be
// wrong] so instead we have to retrieve the original linearized factors AND
// add the cached factors from the boundary
KeySet affectedKeysSet; // Will return this result
// ordering provides all keys in conditionals, there cannot be others
// because path to root included
gttic(affectedKeys);
FastList<Key> affectedKeys;
for (const auto& conditional : affectedBayesNet)
affectedKeys.insert(affectedKeys.end(), conditional->beginFrontals(),
conditional->endFrontals());
gttoc(affectedKeys);
static const double kBatchThreshold = 0.65;
if (affectedKeys.size() >= theta_.size() * kBatchThreshold) {
// Do a batch step - reorder and relinearize all variables
recalculateBatch(updateParams, &affectedKeysSet, result);
} else {
recalculateIncremental(updateParams, relinKeys, affectedKeys,
&affectedKeysSet, orphans, result);
KeySet affectedKeysSet;
static const double kBatchThreshold = 0.65;
if (affectedKeys.size() >= theta_.size() * kBatchThreshold) {
// Do a batch step - reorder and relinearize all variables
recalculateBatch(updateParams, &affectedKeysSet, result);
} else {
recalculateIncremental(updateParams, relinKeys, affectedKeys,
&affectedKeysSet, &orphans, result);
}
// Root clique variables for detailed results
if (result->detail && params_.enableDetailedResults) {
for (const auto& root : roots_)
for (Key var : *root->conditional())
result->detail->variableStatus[var].inRootClique = true;
}
// Update replaced keys mask (accumulates until back-substitution happens)
deltaReplacedMask_.insert(affectedKeysSet.begin(), affectedKeysSet.end());
}
// Root clique variables for detailed results
if (result->detail && params_.enableDetailedResults) {
for (const auto& root : roots_)
for (Key var : *root->conditional())
result->detail->variableStatus[var].inRootClique = true;
}
return affectedKeysSet;
}
/* ************************************************************************* */
void ISAM2::addVariables(const Values& newTheta,
@ -471,22 +481,7 @@ ISAM2Result ISAM2::update(const NonlinearFactorGraph& newFactors,
&variableIndex_);
// 8. Redo top of Bayes tree
if (!result.markedKeys.empty() || !result.observedKeys.empty()) {
// Remove top of Bayes tree and convert to a factor graph:
// (a) For each affected variable, remove the corresponding clique and all
// parents up to the root. (b) Store orphaned sub-trees \BayesTree_{O} of
// removed cliques.
GaussianBayesNet affectedBayesNet;
Cliques orphans;
this->removeTop(
KeyVector(result.markedKeys.begin(), result.markedKeys.end()),
affectedBayesNet, orphans);
KeySet affectedKeysSet = recalculate(updateParams, affectedBayesNet,
relinKeys, &orphans, &result);
// Update replaced keys mask (accumulates until back-substitution happens)
deltaReplacedMask_.insert(affectedKeysSet.begin(), affectedKeysSet.end());
}
recalculate(updateParams, relinKeys, &result);
// Update data structures to remove unused keys
if (!result.unusedKeys.empty()) {

View File

@ -296,11 +296,11 @@ class GTSAM_EXPORT ISAM2 : public BayesTree<ISAM2Clique> {
const FastList<Key>& affectedKeys,
KeySet* affectedKeysSet, Cliques* orphans,
ISAM2Result* result);
KeySet recalculate(const ISAM2UpdateParams& updateParams,
const GaussianBayesNet& affectedBayesNet,
const KeySet& relinKeys, Cliques* orphans,
ISAM2Result* result);
/**
* Remove marked top and either recalculate in batch or incrementally.
*/
void recalculate(const ISAM2UpdateParams& updateParams,
const KeySet& relinKeys, ISAM2Result* result);
/**
* Add new variables to the ISAM2 system.