add methods to perform correct elimination

release/4.3a0
Varun Agrawal 2022-11-07 18:29:49 -05:00
parent 610a535b30
commit 1815433cbb
3 changed files with 123 additions and 32 deletions

View File

@ -229,6 +229,12 @@ HybridValues HybridBayesNet::optimize() const {
/* ************************************************************************* */
VectorValues HybridBayesNet::optimize(const DiscreteValues &assignment) const {
GaussianBayesNet gbn = this->choose(assignment);
// Check if there exists a nullptr in the GaussianBayesNet
// If yes, return an empty VectorValues
if (std::find(gbn.begin(), gbn.end(), nullptr) != gbn.end()) {
return VectorValues();
}
return gbn.optimize();
}

View File

@ -492,6 +492,75 @@ AlgebraicDecisionTree<Key> HybridGaussianFactorGraph::probPrime(
return prob_tree;
}
/* ************************************************************************ */
DecisionTree<Key, VectorValues::shared_ptr>
HybridGaussianFactorGraph::continuousDelta(
const DiscreteKeys &discrete_keys,
const boost::shared_ptr<BayesNetType> &continuousBayesNet,
const std::vector<DiscreteValues> &assignments) const {
// Create a decision tree of all the different VectorValues
std::vector<VectorValues::shared_ptr> vector_values;
for (const DiscreteValues &assignment : assignments) {
VectorValues values = continuousBayesNet->optimize(assignment);
vector_values.push_back(boost::make_shared<VectorValues>(values));
}
DecisionTree<Key, VectorValues::shared_ptr> delta_tree(discrete_keys,
vector_values);
return delta_tree;
}
/* ************************************************************************ */
AlgebraicDecisionTree<Key> HybridGaussianFactorGraph::continuousProbPrimes(
const DiscreteKeys &discrete_keys,
const boost::shared_ptr<BayesNetType> &continuousBayesNet,
const std::vector<DiscreteValues> &assignments) const {
// Create a decision tree of all the different VectorValues
DecisionTree<Key, VectorValues::shared_ptr> delta_tree =
this->continuousDelta(discrete_keys, continuousBayesNet, assignments);
// Get the probPrime tree with the correct leaf probabilities
std::vector<double> probPrimes;
for (const DiscreteValues &assignment : assignments) {
VectorValues delta = *delta_tree(assignment);
// If VectorValues is empty, it means this is a pruned branch.
// Set thr probPrime to 0.0.
if (delta.size() == 0) {
probPrimes.push_back(0.0);
continue;
}
double error = 0.0;
for (size_t idx = 0; idx < size(); idx++) {
auto factor = factors_.at(idx);
if (factor->isHybrid()) {
if (auto c = boost::dynamic_pointer_cast<HybridConditional>(factor)) {
error += c->asMixture()->error(delta, assignment);
}
if (auto f =
boost::dynamic_pointer_cast<GaussianMixtureFactor>(factor)) {
error += f->error(delta, assignment);
}
} else if (factor->isContinuous()) {
if (auto f =
boost::dynamic_pointer_cast<HybridGaussianFactor>(factor)) {
error += f->inner()->error(delta);
}
if (auto cg = boost::dynamic_pointer_cast<HybridConditional>(factor)) {
error += cg->asGaussian()->error(delta);
}
}
}
probPrimes.push_back(exp(-error));
}
AlgebraicDecisionTree<Key> probPrimeTree(discrete_keys, probPrimes);
return probPrimeTree;
}
/* ************************************************************************ */
boost::shared_ptr<HybridGaussianFactorGraph::BayesNetType>
HybridGaussianFactorGraph::eliminateHybridSequential() const {
@ -502,52 +571,29 @@ HybridGaussianFactorGraph::eliminateHybridSequential() const {
HybridBayesNet::shared_ptr bayesNet;
HybridGaussianFactorGraph::shared_ptr discreteGraph;
std::tie(bayesNet, discreteGraph) =
BaseEliminateable::eliminatePartialSequential(
continuous_ordering, EliminationTraitsType::DefaultEliminate);
BaseEliminateable::eliminatePartialSequential(continuous_ordering);
// Get the last continuous conditional which will have all the discrete keys
auto last_conditional = bayesNet->at(bayesNet->size() - 1);
// Get all the discrete assignments
DiscreteKeys discrete_keys = last_conditional->discreteKeys();
const std::vector<DiscreteValues> assignments =
DiscreteValues::CartesianProduct(discrete_keys);
// Save a copy of the original discrete key ordering
DiscreteKeys orig_discrete_keys(discrete_keys);
// Reverse discrete keys order for correct tree construction
std::reverse(discrete_keys.begin(), discrete_keys.end());
// Create a decision tree of all the different VectorValues
std::vector<VectorValues::shared_ptr> vector_values;
for (const DiscreteValues &assignment : assignments) {
VectorValues values = bayesNet->optimize(assignment);
vector_values.push_back(boost::make_shared<VectorValues>(values));
}
DecisionTree<Key, VectorValues::shared_ptr> delta_tree(discrete_keys,
vector_values);
AlgebraicDecisionTree<Key> probPrimeTree =
continuousProbPrimes(discrete_keys, bayesNet, assignments);
// Get the probPrime tree with the correct leaf probabilities
std::vector<double> probPrimes;
for (const DiscreteValues &assignment : assignments) {
double error = 0.0;
VectorValues delta = *delta_tree(assignment);
for (auto factor : *this) {
if (factor->isHybrid()) {
auto f = boost::static_pointer_cast<GaussianMixtureFactor>(factor);
error += f->error(delta, assignment);
} else if (factor->isContinuous()) {
auto f = boost::static_pointer_cast<HybridGaussianFactor>(factor);
error += f->inner()->error(delta);
}
}
probPrimes.push_back(exp(-error));
}
AlgebraicDecisionTree<Key> probPrimeTree(discrete_keys, probPrimes);
discreteGraph->add(DecisionTreeFactor(discrete_keys, probPrimeTree));
discreteGraph->add(DecisionTreeFactor(orig_discrete_keys, probPrimeTree));
// Perform discrete elimination
HybridBayesNet::shared_ptr discreteBayesNet =
discreteGraph->eliminateSequential(
discrete_ordering, EliminationTraitsType::DefaultEliminate);
discreteGraph->eliminateSequential(discrete_ordering);
bayesNet->add(*discreteBayesNet);
return bayesNet;

View File

@ -25,6 +25,7 @@
#include <gtsam/inference/FactorGraph.h>
#include <gtsam/inference/Ordering.h>
#include <gtsam/linear/GaussianFactor.h>
#include <gtsam/linear/VectorValues.h>
namespace gtsam {
@ -190,6 +191,44 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
AlgebraicDecisionTree<Key> probPrime(
const VectorValues& continuousValues) const;
/**
* @brief Compute the VectorValues solution for the continuous variables for
* each mode.
*
* @param discrete_keys The discrete keys which form all the modes.
* @param continuousBayesNet The Bayes Net representing the continuous
* eliminated variables.
* @param assignments List of all discrete assignments to create the final
* decision tree.
* @return DecisionTree<Key, VectorValues::shared_ptr>
*/
DecisionTree<Key, VectorValues::shared_ptr> continuousDelta(
const DiscreteKeys& discrete_keys,
const boost::shared_ptr<BayesNetType>& continuousBayesNet,
const std::vector<DiscreteValues>& assignments) const;
/**
* @brief Compute the unnormalized probabilities of the continuous variables
* for each of the modes.
*
* @param discrete_keys The discrete keys which form all the modes.
* @param continuousBayesNet The Bayes Net representing the continuous
* eliminated variables.
* @param assignments List of all discrete assignments to create the final
* decision tree.
* @return AlgebraicDecisionTree<Key>
*/
AlgebraicDecisionTree<Key> continuousProbPrimes(
const DiscreteKeys& discrete_keys,
const boost::shared_ptr<BayesNetType>& continuousBayesNet,
const std::vector<DiscreteValues>& assignments) const;
/**
* @brief Custom elimination function which computes the correct
* continuous probabilities.
*
* @return boost::shared_ptr<BayesNetType>
*/
boost::shared_ptr<BayesNetType> eliminateHybridSequential() const;
/**