improved result printing and use of flags for ImuFactorExample.py

release/4.3a0
Varun Agrawal 2020-06-28 20:24:54 -05:00
parent 52a8dde6a7
commit 17bf29d4b0
1 changed files with 28 additions and 20 deletions

View File

@ -63,7 +63,7 @@ class ImuFactorExample(PreintegrationExample):
graph.push_back(gtsam.PriorFactorVector(
V(i), state.velocity(), self.velNoise))
def run(self, T=12, verbose=True):
def run(self, T=12, compute_covariances=False, verbose=True):
graph = gtsam.NonlinearFactorGraph()
# initialize data structure for pre-integrated IMU measurements
@ -75,9 +75,9 @@ class ImuFactorExample(PreintegrationExample):
# simulate the loop
i = 0 # state index
actual_state_i = self.scenario.navState(0)
initial.insert(X(i), actual_state_i.pose())
initial.insert(V(i), actual_state_i.velocity())
initial_state_i = self.scenario.navState(0)
initial.insert(X(i), initial_state_i.pose())
initial.insert(V(i), initial_state_i.velocity())
for k, t in enumerate(np.arange(0, T, self.dt)):
# get measurements and add them to PIM
@ -111,17 +111,20 @@ class ImuFactorExample(PreintegrationExample):
poseNoise = gtsam.Pose3(rotationNoise, translationNoise)
actual_state_i = self.scenario.navState(t + self.dt)
actual_state_i = gtsam.NavState(
print("Actual state at {0}:\n{1}".format(t+self.dt, actual_state_i))
noisy_state_i = gtsam.NavState(
actual_state_i.pose().compose(poseNoise),
actual_state_i.velocity() + np.random.randn(3)*0.1)
initial.insert(X(i+1), actual_state_i.pose())
initial.insert(V(i+1), actual_state_i.velocity())
initial.insert(X(i+1), noisy_state_i.pose())
initial.insert(V(i+1), noisy_state_i.velocity())
i += 1
# add priors on beginning and end
# add prior on beginning
self.addPrior(0, graph)
self.addPrior(num_poses - 1, graph)
# add prior on end
# self.addPrior(num_poses - 1, graph)
# optimize using Levenberg-Marquardt optimization
params = gtsam.LevenbergMarquardtParams()
@ -129,6 +132,9 @@ class ImuFactorExample(PreintegrationExample):
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initial, params)
result = optimizer.optimize()
result.print_("")
if compute_covariances:
# Calculate and print marginal covariances
marginals = gtsam.Marginals(graph, result)
print("Covariance on bias:\n", marginals.marginalCovariance(BIAS_KEY))
@ -148,7 +154,7 @@ class ImuFactorExample(PreintegrationExample):
gtsam.utils.plot.set_axes_equal(POSES_FIG+1)
print(result.atimuBias_ConstantBias(BIAS_KEY))
print("Bias Values", result.atimuBias_ConstantBias(BIAS_KEY))
plt.ioff()
plt.show()
@ -159,8 +165,10 @@ if __name__ == '__main__':
parser.add_argument("--twist_scenario",
default="sick_twist",
choices=("zero_twist", "forward_twist", "loop_twist", "sick_twist"))
parser.add_argument("--time", "-T", default=12, type=int, help="Total time in seconds")
parser.add_argument("--time", "-T", default=12,
type=int, help="Total time in seconds")
parser.add_argument("--compute_covariances", default=False, action='store_true')
parser.add_argument("--verbose", default=False, action='store_true')
args = parser.parse_args()
ImuFactorExample().run(args.time, args.verbose)
ImuFactorExample(args.twist_scenario).run(args.time, args.compute_covariances, args.verbose)