Comments, unprintable characters
parent
8256a6a5d2
commit
179f17eb1e
|
@ -64,20 +64,17 @@ void Sphere2::print(const std::string& s) const {
|
|||
/* ************************************************************************* */
|
||||
Sphere2 Sphere2::retract(const Vector& v) const {
|
||||
|
||||
// If we had a 3D point, we could just add and normalize, as in Absil
|
||||
// Point3 newPoint = p_ + z;
|
||||
|
||||
// Get the vector form of the point and the basis matrix
|
||||
Vector p = Point3::Logmap(p_);
|
||||
Vector axis;
|
||||
Matrix B = getBasis(&axis);
|
||||
|
||||
// Compute the 3D ξ^ vector
|
||||
// Compute the 3D xi_hat vector
|
||||
Vector xi_hat = v(0) * B.col(0) + v(1) * B.col(1);
|
||||
Vector newPoint = p + xi_hat;
|
||||
|
||||
// Project onto the manifold, i.e. the closest point on the circle to the new location; same as
|
||||
// putting it onto the unit circle
|
||||
// Project onto the manifold, i.e. the closest point on the circle to the new location;
|
||||
// same as putting it onto the unit circle
|
||||
Vector projected = newPoint / newPoint.norm();
|
||||
|
||||
return Sphere2(Point3::Expmap(projected));
|
||||
|
@ -87,9 +84,9 @@ Sphere2 Sphere2::retract(const Vector& v) const {
|
|||
Vector Sphere2::localCoordinates(const Sphere2& y) const {
|
||||
|
||||
// Make sure that the angle different between x and y is less than 90. Otherwise,
|
||||
// we can project x + ξ^ from the tangent space at x to y.
|
||||
// we can project x + xi_hat from the tangent space at x to y.
|
||||
double cosAngle = y.p_.dot(p_);
|
||||
assert(cosAngle > 0.0 && "Can not retract from x to y in the first place.");
|
||||
assert(cosAngle > 0.0 && "Can not retract from x to y.");
|
||||
|
||||
// Get the basis matrix
|
||||
Matrix B = getBasis();
|
||||
|
@ -98,7 +95,7 @@ Vector Sphere2::localCoordinates(const Sphere2& y) const {
|
|||
Vector p = Point3::Logmap(p_);
|
||||
Vector q = Point3::Logmap(y.p_);
|
||||
|
||||
// Compute the basis coefficients [ξ1,ξ2] = (B'q)/(p'q).
|
||||
// Compute the basis coefficients [v0,v1] = (B'q)/(p'q).
|
||||
double alpha = p.transpose() * q;
|
||||
assert(alpha != 0.0);
|
||||
Matrix coeffs = (B.transpose() * q) / alpha;
|
||||
|
|
|
@ -22,8 +22,7 @@
|
|||
|
||||
namespace gtsam {
|
||||
|
||||
/// Represents a 3D point on a unit sphere. The Sphere2 with the 3D ξ^ variable and two
|
||||
/// coefficients ξ_1 and ξ_2 that scale the 3D basis vectors of the tangent space.
|
||||
/// Represents a 3D point on a unit sphere.
|
||||
class Sphere2 {
|
||||
|
||||
private:
|
||||
|
|
Loading…
Reference in New Issue