use std::optional for specifying dead mode threshold
parent
d2b9eb5df6
commit
1764b58e8c
|
@ -47,8 +47,8 @@ bool HybridBayesNet::equals(const This &bn, double tol) const {
|
|||
// TODO(Frank): This can be quite expensive *unless* the factors have already
|
||||
// been pruned before. Another, possibly faster approach is branch and bound
|
||||
// search to find the K-best leaves and then create a single pruned conditional.
|
||||
HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves, bool removeDeadModes,
|
||||
double deadModeThreshold) const {
|
||||
HybridBayesNet HybridBayesNet::prune(
|
||||
size_t maxNrLeaves, const std::optional<double> &deadModeThreshold) const {
|
||||
// Collect all the discrete conditionals. Could be small if already pruned.
|
||||
const DiscreteBayesNet marginal = discreteMarginal();
|
||||
|
||||
|
@ -66,13 +66,13 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves, bool removeDeadModes,
|
|||
pruned.prune(maxNrLeaves);
|
||||
|
||||
DiscreteValues deadModesValues;
|
||||
if (removeDeadModes) {
|
||||
if (deadModeThreshold.has_value()) {
|
||||
DiscreteMarginals marginals(DiscreteFactorGraph{pruned});
|
||||
for (auto dkey : pruned.discreteKeys()) {
|
||||
Vector probabilities = marginals.marginalProbabilities(dkey);
|
||||
|
||||
int index = -1;
|
||||
auto threshold = (probabilities.array() > deadModeThreshold);
|
||||
auto threshold = (probabilities.array() > *deadModeThreshold);
|
||||
// If atleast 1 value is non-zero, then we can find the index
|
||||
// Else if all are zero, index would be set to 0 which is incorrect
|
||||
if (!threshold.isZero()) {
|
||||
|
@ -121,7 +121,7 @@ HybridBayesNet HybridBayesNet::prune(size_t maxNrLeaves, bool removeDeadModes,
|
|||
// Prune the hybrid Gaussian conditional!
|
||||
auto prunedHybridGaussianConditional = hgc->prune(pruned);
|
||||
|
||||
if (removeDeadModes) {
|
||||
if (deadModeThreshold.has_value()) {
|
||||
KeyVector deadKeys, conditionalDiscreteKeys;
|
||||
for (const auto &kv : deadModesValues) {
|
||||
deadKeys.push_back(kv.first);
|
||||
|
|
|
@ -217,15 +217,15 @@ class GTSAM_EXPORT HybridBayesNet : public BayesNet<HybridConditional> {
|
|||
* @brief Prune the Bayes Net such that we have at most maxNrLeaves leaves.
|
||||
*
|
||||
* @param maxNrLeaves Continuous values at which to compute the error.
|
||||
* @param removeDeadModes Flag to enable removal of modes which only have a
|
||||
* single possible assignment.
|
||||
* @param deadModeThreshold The threshold to check the mode marginals against.
|
||||
* If greater than this threshold, the mode gets assigned that value and is
|
||||
* considered "dead" for hybrid elimination.
|
||||
* The mode can then be removed since it only has a single possible
|
||||
* assignment.
|
||||
* @return A pruned HybridBayesNet
|
||||
*/
|
||||
HybridBayesNet prune(size_t maxNrLeaves, bool removeDeadModes = false,
|
||||
double deadModeThreshold = 0.99) const;
|
||||
HybridBayesNet prune(size_t maxNrLeaves,
|
||||
const std::optional<double> &deadModeThreshold) const;
|
||||
|
||||
/**
|
||||
* @brief Error method using HybridValues which returns specific error for
|
||||
|
|
Loading…
Reference in New Issue