Add gradientAtZero (Raw memory access)
parent
c6faa784e2
commit
174f60762a
|
|
@ -28,6 +28,13 @@ namespace gtsam {
|
|||
template<size_t D>
|
||||
class RegularJacobianFactor: public JacobianFactor {
|
||||
|
||||
private:
|
||||
|
||||
/** Use eigen magic to access raw memory */
|
||||
typedef Eigen::Matrix<double, D, 1> DVector;
|
||||
typedef Eigen::Map<DVector> DMap;
|
||||
typedef Eigen::Map<const DVector> ConstDMap;
|
||||
|
||||
public:
|
||||
|
||||
/** Construct an n-ary factor
|
||||
|
|
@ -50,60 +57,57 @@ public:
|
|||
JacobianFactor(keys, augmentedMatrix, sigmas) {
|
||||
}
|
||||
|
||||
/// y += alpha * A'*A*x
|
||||
/** y += alpha * A'*A*x */
|
||||
void multiplyHessianAdd(double alpha, const VectorValues& x,
|
||||
VectorValues& y) const {
|
||||
JacobianFactor::multiplyHessianAdd(alpha, x, y);
|
||||
}
|
||||
|
||||
// Note: this is not assuming a fixed dimension for the variables,
|
||||
// but requires the vector accumulatedDims to tell the dimension of
|
||||
// each variable: e.g.: x0 has dim 3, x2 has dim 6, x3 has dim 2,
|
||||
// then accumulatedDims is [0 3 9 11 13]
|
||||
// NOTE: size of accumulatedDims is size of keys + 1!!
|
||||
/** Raw memory access version of multiplyHessianAdd
|
||||
* Note: this is not assuming a fixed dimension for the variables,
|
||||
* but requires the vector accumulatedDims to tell the dimension of
|
||||
* each variable: e.g.: x0 has dim 3, x2 has dim 6, x3 has dim 2,
|
||||
* then accumulatedDims is [0 3 9 11 13]
|
||||
* NOTE: size of accumulatedDims is size of keys + 1!! */
|
||||
void multiplyHessianAdd(double alpha, const double* x, double* y,
|
||||
const std::vector<size_t>& accumulatedDims) const {
|
||||
|
||||
// Use eigen magic to access raw memory
|
||||
typedef Eigen::Matrix<double, Eigen::Dynamic, 1> DVector;
|
||||
typedef Eigen::Map<DVector> DMap;
|
||||
typedef Eigen::Map<const DVector> ConstDMap;
|
||||
/// Use eigen magic to access raw memory
|
||||
typedef Eigen::Matrix<double, Eigen::Dynamic, 1> VectorD;
|
||||
typedef Eigen::Map<VectorD> MapD;
|
||||
typedef Eigen::Map<const VectorD> ConstMapD;
|
||||
|
||||
if (empty())
|
||||
return;
|
||||
Vector Ax = zero(Ab_.rows());
|
||||
|
||||
// Just iterate over all A matrices and multiply in correct config part (looping over keys)
|
||||
// E.g.: Jacobian A = [A0 A1 A2] multiplies x = [x0 x1 x2]'
|
||||
// Hence: Ax = A0 x0 + A1 x1 + A2 x2 (hence we loop over the keys and accumulate)
|
||||
/// Just iterate over all A matrices and multiply in correct config part (looping over keys)
|
||||
/// E.g.: Jacobian A = [A0 A1 A2] multiplies x = [x0 x1 x2]'
|
||||
/// Hence: Ax = A0 x0 + A1 x1 + A2 x2 (hence we loop over the keys and accumulate)
|
||||
for (size_t pos = 0; pos < size(); ++pos)
|
||||
{
|
||||
Ax += Ab_(pos)
|
||||
* ConstDMap(x + accumulatedDims[keys_[pos]], accumulatedDims[keys_[pos] + 1] - accumulatedDims[keys_[pos]]);
|
||||
* ConstMapD(x + accumulatedDims[keys_[pos]], accumulatedDims[keys_[pos] + 1] - accumulatedDims[keys_[pos]]);
|
||||
}
|
||||
// Deal with noise properly, need to Double* whiten as we are dividing by variance
|
||||
/// Deal with noise properly, need to Double* whiten as we are dividing by variance
|
||||
if (model_) {
|
||||
model_->whitenInPlace(Ax);
|
||||
model_->whitenInPlace(Ax);
|
||||
}
|
||||
|
||||
// multiply with alpha
|
||||
/// multiply with alpha
|
||||
Ax *= alpha;
|
||||
|
||||
// Again iterate over all A matrices and insert Ai^T into y
|
||||
/// Again iterate over all A matrices and insert Ai^T into y
|
||||
for (size_t pos = 0; pos < size(); ++pos){
|
||||
DMap(y + accumulatedDims[keys_[pos]], accumulatedDims[keys_[pos] + 1] - accumulatedDims[keys_[pos]]) += Ab_(
|
||||
MapD(y + accumulatedDims[keys_[pos]], accumulatedDims[keys_[pos] + 1] - accumulatedDims[keys_[pos]]) += Ab_(
|
||||
pos).transpose() * Ax;
|
||||
}
|
||||
}
|
||||
|
||||
/** Raw memory access version of multiplyHessianAdd */
|
||||
void multiplyHessianAdd(double alpha, const double* x, double* y) const {
|
||||
|
||||
// Use eigen magic to access raw memory
|
||||
typedef Eigen::Matrix<double, D, 1> DVector;
|
||||
typedef Eigen::Map<DVector> DMap;
|
||||
typedef Eigen::Map<const DVector> ConstDMap;
|
||||
|
||||
if (empty()) return;
|
||||
Vector Ax = zero(Ab_.rows());
|
||||
|
||||
|
|
@ -122,19 +126,16 @@ public:
|
|||
DMap(y + D * keys_[pos]) += Ab_(pos).transpose() * Ax;
|
||||
}
|
||||
|
||||
/// Return the diagonal of the Hessian for this factor
|
||||
VectorValues hessianDiagonal() const {
|
||||
return JacobianFactor::hessianDiagonal();
|
||||
}
|
||||
// /// Return the diagonal of the Hessian for this factor
|
||||
// VectorValues hessianDiagonal() const {
|
||||
// return JacobianFactor::hessianDiagonal();
|
||||
// }
|
||||
|
||||
/// Raw memory access version of hessianDiagonal
|
||||
/* ************************************************************************* */
|
||||
// TODO: currently assumes all variables of the same size D (templated) and keys arranged from 0 to n
|
||||
/** Raw memory access version of hessianDiagonal
|
||||
* TODO: currently assumes all variables of the same size D (templated) and keys arranged from 0 to n
|
||||
*
|
||||
*/
|
||||
void hessianDiagonal(double* d) const {
|
||||
// Use eigen magic to access raw memory
|
||||
typedef Eigen::Matrix<double, D, 1> DVector;
|
||||
typedef Eigen::Map<DVector> DMap;
|
||||
|
||||
// Loop over all variables in the factor
|
||||
for (DenseIndex j = 0; j < (DenseIndex) size(); ++j) {
|
||||
// Get the diagonal block, and insert its diagonal
|
||||
|
|
@ -152,12 +153,28 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
/** // Gradient is really -A'*b / sigma^2 */
|
||||
VectorValues gradientAtZero() const {
|
||||
return JacobianFactor::gradientAtZero();
|
||||
}
|
||||
|
||||
/** Raw memory access version of gradientAtZero */
|
||||
void gradientAtZero(double* d) const {
|
||||
//throw std::runtime_error("gradientAtZero not implemented for Jacobian factor");
|
||||
// Get vector b not weighted
|
||||
Vector b = getb();
|
||||
Vector b_sigma = model_ ? (model_->whiten(b)*model_->whiten(b)) : b;
|
||||
|
||||
// gradient -= A'*b/sigma^2
|
||||
// Loop over all variables in the factor
|
||||
for (DenseIndex j = 0; j < (DenseIndex) size(); ++j) {
|
||||
// Get the diagonal block, and insert its diagonal
|
||||
DVector dj;
|
||||
for (size_t k = 0; k < D; ++k){
|
||||
Vector column_k = Ab_(j).col(k);
|
||||
dj(k) = -1.0*dot(b_sigma,column_k);
|
||||
}
|
||||
DMap(d + D * j) += dj;
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
|
|
|||
Loading…
Reference in New Issue