now I need to move to testing and interpolation
parent
1e2a1d2591
commit
16d624d4e1
|
@ -67,9 +67,10 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<
|
|||
/// shorthand for a smart pointer to a factor
|
||||
typedef boost::shared_ptr<This> shared_ptr;
|
||||
|
||||
static const int Dim = 6; ///< Pose3 dimension
|
||||
static const int DimBlock = 12; ///< size of the variable stacking 2 poses from which the observation pose is interpolated
|
||||
static const int DimPose = 6; ///< Pose3 dimension
|
||||
static const int ZDim = 2; ///< Measurement dimension (Point2)
|
||||
typedef Eigen::Matrix<double, ZDim, Dim> MatrixZD; // F blocks (derivatives wrt camera)
|
||||
typedef Eigen::Matrix<double, ZDim, DimBlock> MatrixZD; // F blocks (derivatives wrt camera)
|
||||
typedef std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> > FBlocks; // vector of F blocks
|
||||
|
||||
/**
|
||||
|
@ -247,96 +248,101 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<
|
|||
* respect to both the body pose and extrinsic pose), the point Jacobian E,
|
||||
* and the error vector b. Note that the jacobians are computed for a given point.
|
||||
*/
|
||||
// void computeJacobiansAndCorrectForMissingMeasurements(
|
||||
// FBlocks& Fs, Matrix& E, Vector& b, const Values& values) const {
|
||||
// if (!result_) {
|
||||
// throw("computeJacobiansWithTriangulatedPoint");
|
||||
// } else { // valid result: compute jacobians
|
||||
// size_t numViews = measured_.size();
|
||||
// E = Matrix::Zero(3 * numViews, 3); // a StereoPoint2 for each view (point jacobian)
|
||||
// b = Vector::Zero(3 * numViews); // a StereoPoint2 for each view
|
||||
// Matrix dPoseCam_dPoseBody_i, dPoseCam_dPoseExt_i, dProject_dPoseCam_i, Ei;
|
||||
//
|
||||
// for (size_t i = 0; i < numViews; i++) { // for each camera/measurement
|
||||
// Pose3 w_P_body = values.at<Pose3>(world_P_body_key_pairs_.at(i));
|
||||
// Pose3 body_P_cam = values.at<Pose3>(body_P_cam_ this->keys_.at(i));
|
||||
// StereoCamera camera(
|
||||
// w_P_body.compose(body_P_cam, dPoseCam_dPoseBody_i, dPoseCam_dPoseExt_i),
|
||||
// K_all_[i]);
|
||||
// // get jacobians and error vector for current measurement
|
||||
// StereoPoint2 reprojectionError_i = StereoPoint2(
|
||||
// camera.project(*result_, dProject_dPoseCam_i, Ei) - measured_.at(i));
|
||||
// Eigen::Matrix<double, ZDim, Dim> J; // 3 x 12
|
||||
// J.block<ZDim, 6>(0, 0) = dProject_dPoseCam_i * dPoseCam_dPoseBody_i; // (3x6) * (6x6)
|
||||
// J.block<ZDim, 6>(0, 6) = dProject_dPoseCam_i * dPoseCam_dPoseExt_i; // (3x6) * (6x6)
|
||||
// // if the right pixel is invalid, fix jacobians
|
||||
// if (std::isnan(measured_.at(i).uR()))
|
||||
// {
|
||||
// J.block<1, 12>(1, 0) = Matrix::Zero(1, 12);
|
||||
// Ei.block<1, 3>(1, 0) = Matrix::Zero(1, 3);
|
||||
// reprojectionError_i = StereoPoint2(reprojectionError_i.uL(), 0.0,
|
||||
// reprojectionError_i.v());
|
||||
// }
|
||||
// // fit into the output structures
|
||||
// Fs.push_back(J);
|
||||
// size_t row = 3 * i;
|
||||
// b.segment<ZDim>(row) = -reprojectionError_i.vector();
|
||||
// E.block<3, 3>(row, 0) = Ei;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
void computeJacobiansWithTriangulatedPoint(FBlocks& Fs, Matrix& E, Vector& b,
|
||||
const Values& values) const
|
||||
override {
|
||||
if (!this->result_) {
|
||||
throw("computeJacobiansWithTriangulatedPoint");
|
||||
} else { // valid result: compute jacobians
|
||||
size_t numViews = this->measured_.size();
|
||||
E = Matrix::Zero(2 * numViews, 3); // a Point2 for each view (point jacobian)
|
||||
b = Vector::Zero(2 * numViews); // a Point2 for each view
|
||||
Eigen::Matrix<double, ZDim, DimPose> dProject_dPoseCam;
|
||||
Eigen::Matrix<double, DimPose, DimPose> dInterpPose_dPoseBody1,
|
||||
dInterpPose_dPoseBody2, dPoseCam_dInterpPose;
|
||||
Eigen::Matrix<double, ZDim, 3> Ei;
|
||||
|
||||
for (size_t i = 0; i < numViews; i++) { // for each camera/measurement
|
||||
Pose3 w_P_body1 = values.at<Pose3>(world_P_body_key_pairs_[i].first);
|
||||
Pose3 w_P_body2 = values.at<Pose3>(world_P_body_key_pairs_[i].second);
|
||||
double interpolationFactor = gammas_[i];
|
||||
// get interpolated pose:
|
||||
std::cout << "TODO: need to add proper interpolation and Jacobians here" << std::endl;
|
||||
Pose3 w_P_body = w_P_body1.interpolateRt(w_P_body2,
|
||||
interpolationFactor); /*dInterpPose_dPoseBody1, dInterpPose_dPoseBody2 */
|
||||
Pose3 body_P_cam = body_P_sensors_[i];
|
||||
Pose3 w_P_cam = w_P_body.compose(body_P_cam, dPoseCam_dInterpPose);
|
||||
PinholeCamera<CALIBRATION> camera(w_P_cam, K_all_[i]);
|
||||
|
||||
// get jacobians and error vector for current measurement
|
||||
Point2 reprojectionError_i = Point2(
|
||||
camera.project(*this->result_, dProject_dPoseCam, Ei)
|
||||
- this->measured_.at(i));
|
||||
Eigen::Matrix<double, ZDim, DimBlock> J; // 2 x 12
|
||||
J.block<ZDim, 6>(0, 0) = dProject_dPoseCam * dPoseCam_dInterpPose
|
||||
* dInterpPose_dPoseBody1; // (2x6) * (6x6) * (6x6)
|
||||
J.block<ZDim, 6>(0, 6) = dProject_dPoseCam * dPoseCam_dInterpPose
|
||||
* dInterpPose_dPoseBody2; // (2x6) * (6x6) * (6x6)
|
||||
|
||||
// fit into the output structures
|
||||
Fs.push_back(J);
|
||||
size_t row = 2 * i;
|
||||
b.segment<ZDim>(row) = -reprojectionError_i;
|
||||
E.block<3, 3>(row, 0) = Ei;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// linearize and return a Hessianfactor that is an approximation of error(p)
|
||||
// boost::shared_ptr<RegularHessianFactor<DimPose> > createHessianFactor(
|
||||
// const Values& values, const double lambda = 0.0, bool diagonalDamping =
|
||||
// false) const {
|
||||
//
|
||||
// // we may have multiple cameras sharing the same extrinsic cals, hence the number
|
||||
// // of keys may be smaller than 2 * nrMeasurements (which is the upper bound where we
|
||||
// // have a body key and an extrinsic calibration key for each measurement)
|
||||
// size_t nrUniqueKeys = this->keys_.size();
|
||||
// size_t nrNonuniqueKeys = world_P_body_key_pairs_.size()
|
||||
// + body_P_cam_ this->keys_.size();
|
||||
//
|
||||
// // Create structures for Hessian Factors
|
||||
// KeyVector js;
|
||||
// std::vector < Matrix > Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
|
||||
// std::vector<Vector> gs(nrUniqueKeys);
|
||||
//
|
||||
// if (this->measured_.size() != cameras(values).size())
|
||||
// throw std::runtime_error("SmartStereoProjectionHessianFactor: this->"
|
||||
// "measured_.size() inconsistent with input");
|
||||
//
|
||||
// // triangulate 3D point at given linearization point
|
||||
// triangulateSafe(cameras(values));
|
||||
//
|
||||
// if (!result_) { // failed: return "empty/zero" Hessian
|
||||
// for (Matrix& m : Gs)
|
||||
// m = Matrix::Zero(DimPose, DimPose);
|
||||
// for (Vector& v : gs)
|
||||
// v = Vector::Zero(DimPose);
|
||||
// return boost::make_shared < RegularHessianFactor<DimPose>
|
||||
// > ( this->keys_, Gs, gs, 0.0);
|
||||
// }
|
||||
//
|
||||
// // compute Jacobian given triangulated 3D Point
|
||||
// FBlocks Fs;
|
||||
// Matrix F, E;
|
||||
// Vector b;
|
||||
// computeJacobiansAndCorrectForMissingMeasurements(Fs, E, b, values);
|
||||
//
|
||||
// // Whiten using noise model
|
||||
// noiseModel_->WhitenSystem(E, b);
|
||||
// for (size_t i = 0; i < Fs.size(); i++)
|
||||
// Fs[i] = noiseModel_->Whiten(Fs[i]);
|
||||
//
|
||||
boost::shared_ptr<RegularHessianFactor<DimBlock> > createHessianFactor(
|
||||
const Values& values, const double lambda = 0.0, bool diagonalDamping =
|
||||
false) const override {
|
||||
|
||||
// we may have multiple cameras sharing the same extrinsic cals, hence the number
|
||||
// of keys may be smaller than 2 * nrMeasurements (which is the upper bound where we
|
||||
// have a body key and an extrinsic calibration key for each measurement)
|
||||
size_t nrUniqueKeys = this->keys_.size();
|
||||
size_t nrNonuniqueKeys = 2*world_P_body_key_pairs_.size();
|
||||
|
||||
// Create structures for Hessian Factors
|
||||
KeyVector js;
|
||||
std::vector < Matrix > Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
|
||||
std::vector<Vector> gs(nrUniqueKeys);
|
||||
|
||||
if (this->measured_.size() != cameras(values).size())
|
||||
throw std::runtime_error("SmartProjectionPoseFactorRollingShutter: "
|
||||
"measured_.size() inconsistent with input");
|
||||
|
||||
// triangulate 3D point at given linearization point
|
||||
triangulateSafe(cameras(values));
|
||||
|
||||
if (!this->result_) { // failed: return "empty/zero" Hessian
|
||||
for (Matrix& m : Gs)
|
||||
m = Matrix::Zero(DimPose, DimPose);
|
||||
for (Vector& v : gs)
|
||||
v = Vector::Zero(DimPose);
|
||||
return boost::make_shared < RegularHessianFactor<DimPose>
|
||||
> ( this->keys_, Gs, gs, 0.0);
|
||||
}
|
||||
|
||||
// compute Jacobian given triangulated 3D Point
|
||||
FBlocks Fs;
|
||||
Matrix F, E;
|
||||
Vector b;
|
||||
computeJacobiansWithTriangulatedPoint(Fs, E, b, values);
|
||||
|
||||
// Whiten using noise model
|
||||
this->noiseModel_->WhitenSystem(E, b);
|
||||
for (size_t i = 0; i < Fs.size(); i++)
|
||||
Fs[i] = this->noiseModel_->Whiten(Fs[i]);
|
||||
|
||||
// // build augmented Hessian (with last row/column being the information vector)
|
||||
// Matrix3 P;
|
||||
// Cameras::ComputePointCovariance<3>(P, E, lambda, diagonalDamping);
|
||||
// This::Cameras::ComputePointCovariance<3>(P, E, lambda, diagonalDamping);
|
||||
//
|
||||
// // marginalize point: note - we reuse the standard SchurComplement function
|
||||
// SymmetricBlockMatrix augmentedHessian =
|
||||
// Cameras::SchurComplement<3, Dim>(Fs, E, P, b);
|
||||
//
|
||||
// SymmetricBlockMatrix augmentedHessian = This::Cameras::SchurComplement<2,DimBlock>(Fs, E, P, b);
|
||||
|
||||
// // now pack into an Hessian factor
|
||||
// std::vector<DenseIndex> dims(nrUniqueKeys + 1); // this also includes the b term
|
||||
// std::fill(dims.begin(), dims.end() - 1, 6);
|
||||
|
@ -408,7 +414,8 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<
|
|||
// }
|
||||
// return boost::make_shared < RegularHessianFactor<DimPose>
|
||||
// > ( this->keys_, augmentedHessianUniqueKeys);
|
||||
// }
|
||||
}
|
||||
|
||||
/**
|
||||
* Linearize to Gaussian Factor (possibly adding a damping factor Lambda for LM)
|
||||
* @param values Values structure which must contain camera poses and extrinsic pose for this factor
|
||||
|
@ -418,8 +425,8 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<
|
|||
const Values& values, const double lambda = 0.0) const {
|
||||
// depending on flag set on construction we may linearize to different linear factors
|
||||
switch (this->params_.linearizationMode) {
|
||||
// case HESSIAN:
|
||||
// return createHessianFactor(values, lambda);
|
||||
case HESSIAN:
|
||||
return createHessianFactor(values, lambda);
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionPoseFactorRollingShutter: unknown linearization mode");
|
||||
|
|
Loading…
Reference in New Issue