address review comments

release/4.3a0
Varun Agrawal 2022-12-24 21:10:18 +05:30
parent 798c51aec9
commit 13d22b123a
1 changed files with 20 additions and 12 deletions

View File

@ -436,8 +436,8 @@ TEST(HybridEstimation, ProbabilityMultifrontal) {
/**
* Test for correctness via sampling.
*
* Given the conditional P(x0, m0, x1| z0, z1)
* with meaasurements z0, z1, we:
* Compute the conditional P(x0, m0, x1| z0, z1)
* with measurements z0, z1. To do so, we:
* 1. Start with the corresponding Factor Graph `FG`.
* 2. Eliminate the factor graph into a Bayes Net `BN`.
* 3. Sample from the Bayes Net.
@ -446,15 +446,20 @@ TEST(HybridEstimation, ProbabilityMultifrontal) {
TEST(HybridEstimation, CorrectnessViaSampling) {
HybridNonlinearFactorGraph nfg;
auto noise_model = noiseModel::Diagonal::Sigmas(Vector1(1.0));
auto zero_motion =
// First we create a hybrid nonlinear factor graph
// which represents f(x0, x1, m0; z0, z1).
// We linearize and eliminate this to get
// the required Factor Graph FG and Bayes Net BN.
const auto noise_model = noiseModel::Isotropic::Sigma(1, 1.0);
const auto zero_motion =
boost::make_shared<BetweenFactor<double>>(X(0), X(1), 0, noise_model);
auto one_motion =
const auto one_motion =
boost::make_shared<BetweenFactor<double>>(X(0), X(1), 1, noise_model);
std::vector<NonlinearFactor::shared_ptr> factors = {zero_motion, one_motion};
nfg.emplace_nonlinear<PriorFactor<double>>(X(0), 0.0, noise_model);
nfg.emplace_hybrid<MixtureFactor>(
KeyVector{X(0), X(1)}, DiscreteKeys{DiscreteKey(M(0), 2)}, factors);
KeyVector{X(0), X(1)}, DiscreteKeys{DiscreteKey(M(0), 2)},
std::vector<NonlinearFactor::shared_ptr>{zero_motion, one_motion});
Values initial;
double z0 = 0.0, z1 = 1.0;
@ -463,13 +468,13 @@ TEST(HybridEstimation, CorrectnessViaSampling) {
// 1. Create the factor graph from the nonlinear factor graph.
HybridGaussianFactorGraph::shared_ptr fg = nfg.linearize(initial);
// 2. Eliminate into BN
Ordering ordering = fg->getHybridOrdering();
const Ordering ordering = fg->getHybridOrdering();
HybridBayesNet::shared_ptr bn = fg->eliminateSequential(ordering);
// Set up sampling
std::random_device rd;
std::mt19937_64 gen(11);
std::mt19937_64 rng(11);
// 3. Do sampling
std::vector<double> ratios;
@ -477,10 +482,10 @@ TEST(HybridEstimation, CorrectnessViaSampling) {
for (size_t i = 0; i < num_samples; i++) {
// Sample from the bayes net
HybridValues sample = bn->sample(&gen);
const HybridValues sample = bn->sample(&rng);
// Compute the ratio in log form and canonical form
DiscreteValues assignment = sample.discrete();
const DiscreteValues assignment = sample.discrete();
double log_ratio = bn->error(sample.continuous(), assignment) -
fg->error(sample.continuous(), assignment);
double ratio = exp(-log_ratio);
@ -490,6 +495,9 @@ TEST(HybridEstimation, CorrectnessViaSampling) {
}
// 4. Check that all samples == 1.0 (constant)
// The error evaluated by the factor graph and the bayes net should be the
// same since the FG represents the unnormalized joint distribution and the BN
// is the unnormalized conditional, hence giving the ratio value as 1.
double ratio_sum = std::accumulate(ratios.begin(), ratios.end(),
decltype(ratios)::value_type(0));
EXPECT_DOUBLES_EQUAL(1.0, ratio_sum / num_samples, 1e-9);