Merge pull request #1989 from borglab/city10000
commit
131f51a30c
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
|
@ -0,0 +1,219 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Hybrid_City10000.cpp
|
||||
* @brief Example of using hybrid estimation
|
||||
* with multiple odometry measurements.
|
||||
* @author Varun Agrawal
|
||||
* @date January 22, 2025
|
||||
*/
|
||||
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/hybrid/HybridNonlinearFactor.h>
|
||||
#include <gtsam/hybrid/HybridNonlinearFactorGraph.h>
|
||||
#include <gtsam/hybrid/HybridSmoother.h>
|
||||
#include <gtsam/hybrid/HybridValues.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/PriorFactor.h>
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <time.h>
|
||||
|
||||
#include <boost/algorithm/string/classification.hpp>
|
||||
#include <boost/algorithm/string/split.hpp>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using namespace boost::algorithm;
|
||||
|
||||
using symbol_shorthand::M;
|
||||
using symbol_shorthand::X;
|
||||
|
||||
// Testing params
|
||||
const size_t max_loop_count = 2000; // 2000; // 200 //2000 //8000
|
||||
|
||||
noiseModel::Diagonal::shared_ptr prior_noise_model =
|
||||
noiseModel::Diagonal::Sigmas(
|
||||
(Vector(3) << 0.0001, 0.0001, 0.0001).finished());
|
||||
|
||||
noiseModel::Diagonal::shared_ptr pose_noise_model =
|
||||
noiseModel::Diagonal::Sigmas(
|
||||
(Vector(3) << 1.0 / 30.0, 1.0 / 30.0, 1.0 / 100.0).finished());
|
||||
|
||||
/**
|
||||
* @brief Write the results of optimization to filename.
|
||||
*
|
||||
* @param results The Values object with the final results.
|
||||
* @param num_poses The number of poses to write to the file.
|
||||
* @param filename The file name to save the results to.
|
||||
*/
|
||||
void write_results(const Values& results, size_t num_poses,
|
||||
const std::string& filename = "ISAM2_city10000.txt") {
|
||||
ofstream outfile;
|
||||
outfile.open(filename);
|
||||
|
||||
for (size_t i = 0; i < num_poses; ++i) {
|
||||
Pose2 out_pose = results.at<Pose2>(X(i));
|
||||
|
||||
outfile << out_pose.x() << " " << out_pose.y() << " " << out_pose.theta()
|
||||
<< std::endl;
|
||||
}
|
||||
outfile.close();
|
||||
std::cout << "output written to " << filename << std::endl;
|
||||
}
|
||||
|
||||
void SmootherUpdate(HybridSmoother& smoother, HybridNonlinearFactorGraph& graph,
|
||||
const Values& initial, size_t maxNrHypotheses,
|
||||
Values* results) {
|
||||
HybridGaussianFactorGraph linearized = *graph.linearize(initial);
|
||||
// std::cout << "index: " << index << std::endl;
|
||||
smoother.update(linearized, maxNrHypotheses);
|
||||
graph.resize(0);
|
||||
HybridValues delta = smoother.hybridBayesNet().optimize();
|
||||
results->insert_or_assign(initial.retract(delta.continuous()));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main(int argc, char* argv[]) {
|
||||
ifstream in(findExampleDataFile("T1_city10000_04.txt"));
|
||||
// ifstream in("../data/mh_T1_city10000_04.txt"); //Type #1 only
|
||||
// ifstream in("../data/mh_T3b_city10000_10.txt"); //Type #3 only
|
||||
// ifstream in("../data/mh_T1_T3_city10000_04.txt"); //Type #1 + Type #3
|
||||
|
||||
// ifstream in("../data/mh_All_city10000_groundtruth.txt");
|
||||
|
||||
size_t discrete_count = 0, index = 0;
|
||||
|
||||
std::list<double> time_list;
|
||||
|
||||
HybridSmoother smoother(0.99);
|
||||
|
||||
HybridNonlinearFactorGraph graph;
|
||||
|
||||
Values init_values;
|
||||
Values results;
|
||||
|
||||
size_t maxNrHypotheses = 3;
|
||||
|
||||
double x = 0.0;
|
||||
double y = 0.0;
|
||||
double rad = 0.0;
|
||||
|
||||
Pose2 prior_pose(x, y, rad);
|
||||
|
||||
init_values.insert(X(0), prior_pose);
|
||||
|
||||
graph.push_back(PriorFactor<Pose2>(X(0), prior_pose, prior_noise_model));
|
||||
|
||||
SmootherUpdate(smoother, graph, init_values, maxNrHypotheses, &results);
|
||||
|
||||
size_t key_s, key_t;
|
||||
|
||||
clock_t start_time = clock();
|
||||
std::string str;
|
||||
while (getline(in, str) && index < max_loop_count) {
|
||||
vector<string> parts;
|
||||
split(parts, str, is_any_of(" "));
|
||||
|
||||
key_s = stoi(parts[1]);
|
||||
key_t = stoi(parts[3]);
|
||||
|
||||
int num_measurements = stoi(parts[5]);
|
||||
vector<Pose2> pose_array(num_measurements);
|
||||
for (int i = 0; i < num_measurements; ++i) {
|
||||
x = stod(parts[6 + 3 * i]);
|
||||
y = stod(parts[7 + 3 * i]);
|
||||
rad = stod(parts[8 + 3 * i]);
|
||||
pose_array[i] = Pose2(x, y, rad);
|
||||
}
|
||||
|
||||
// Take the first one as the initial estimate
|
||||
Pose2 odom_pose = pose_array[0];
|
||||
if (key_s == key_t - 1) { // new X(key)
|
||||
init_values.insert(X(key_t), init_values.at<Pose2>(X(key_s)) * odom_pose);
|
||||
|
||||
} else { // loop
|
||||
// index++;
|
||||
}
|
||||
|
||||
// Flag if we should run smoother update
|
||||
bool smoother_update = false;
|
||||
|
||||
if (num_measurements == 2) {
|
||||
// Add hybrid factor which considers both measurements
|
||||
DiscreteKey m(M(discrete_count), num_measurements);
|
||||
discrete_count++;
|
||||
|
||||
graph.push_back(DecisionTreeFactor(m, "0.6 0.4"));
|
||||
|
||||
auto f0 = std::make_shared<BetweenFactor<Pose2>>(
|
||||
X(key_s), X(key_t), pose_array[0], pose_noise_model);
|
||||
auto f1 = std::make_shared<BetweenFactor<Pose2>>(
|
||||
X(key_s), X(key_t), pose_array[1], pose_noise_model);
|
||||
std::vector<NonlinearFactorValuePair> factors{{f0, 0.0}, {f1, 0.0}};
|
||||
// HybridNonlinearFactor mixtureFactor(m, factors);
|
||||
HybridNonlinearFactor mixtureFactor(m, {f0, f1});
|
||||
graph.push_back(mixtureFactor);
|
||||
|
||||
smoother_update = true;
|
||||
|
||||
} else {
|
||||
graph.add(BetweenFactor<Pose2>(X(key_s), X(key_t), odom_pose,
|
||||
pose_noise_model));
|
||||
}
|
||||
|
||||
if (smoother_update) {
|
||||
SmootherUpdate(smoother, graph, init_values, maxNrHypotheses, &results);
|
||||
}
|
||||
|
||||
// Print loop index and time taken in processor clock ticks
|
||||
// if (index % 50 == 0 && key_s != key_t - 1) {
|
||||
if (index % 100 == 0) {
|
||||
std::cout << "index: " << index << std::endl;
|
||||
std::cout << "acc_time: " << time_list.back() / CLOCKS_PER_SEC << std::endl;
|
||||
// delta.discrete().print("The Discrete Assignment");
|
||||
tictoc_finishedIteration_();
|
||||
tictoc_print_();
|
||||
}
|
||||
|
||||
if (key_s == key_t - 1) {
|
||||
clock_t cur_time = clock();
|
||||
time_list.push_back(cur_time - start_time);
|
||||
}
|
||||
|
||||
index += 1;
|
||||
}
|
||||
|
||||
SmootherUpdate(smoother, graph, init_values, maxNrHypotheses, &results);
|
||||
|
||||
clock_t end_time = clock();
|
||||
clock_t total_time = end_time - start_time;
|
||||
cout << "total_time: " << total_time / CLOCKS_PER_SEC << " seconds" << endl;
|
||||
|
||||
/// Write results to file
|
||||
write_results(results, (key_t + 1), "HybridISAM_city10000.txt");
|
||||
|
||||
ofstream outfile_time;
|
||||
std::string time_file_name = "HybridISAM_city10000_time.txt";
|
||||
outfile_time.open(time_file_name);
|
||||
for (auto acc_time : time_list) {
|
||||
outfile_time << acc_time << std::endl;
|
||||
}
|
||||
outfile_time.close();
|
||||
cout << "output " << time_file_name << " file." << endl;
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,208 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
|
||||
* GTSAM Copyright 2010-2020, Georgia Tech Research Corporation,
|
||||
* Atlanta, Georgia 30332-0415
|
||||
* All Rights Reserved
|
||||
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
|
||||
|
||||
* See LICENSE for the license information
|
||||
|
||||
* -------------------------------------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file Hybrid_City10000.cpp
|
||||
* @brief Example of using hybrid estimation
|
||||
* with multiple odometry measurements.
|
||||
* @author Varun Agrawal
|
||||
* @date January 22, 2025
|
||||
*/
|
||||
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/nonlinear/ISAM2.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/nonlinear/Values.h>
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/slam/dataset.h>
|
||||
#include <time.h>
|
||||
|
||||
#include <boost/algorithm/string/classification.hpp>
|
||||
#include <boost/algorithm/string/split.hpp>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
using namespace std;
|
||||
using namespace gtsam;
|
||||
using namespace boost::algorithm;
|
||||
|
||||
using symbol_shorthand::X;
|
||||
|
||||
// Testing params
|
||||
const size_t max_loop_count = 2000; // 200 //2000 //8000
|
||||
|
||||
const bool is_with_ambiguity = false; // run original iSAM2 without ambiguities
|
||||
// const bool is_with_ambiguity = true; // run original iSAM2 with ambiguities
|
||||
|
||||
noiseModel::Diagonal::shared_ptr prior_noise_model =
|
||||
noiseModel::Diagonal::Sigmas(
|
||||
(Vector(3) << 0.0001, 0.0001, 0.0001).finished());
|
||||
|
||||
noiseModel::Diagonal::shared_ptr pose_noise_model =
|
||||
noiseModel::Diagonal::Sigmas(
|
||||
(Vector(3) << 1.0 / 30.0, 1.0 / 30.0, 1.0 / 100.0).finished());
|
||||
|
||||
/**
|
||||
* @brief Write the results of optimization to filename.
|
||||
*
|
||||
* @param results The Values object with the final results.
|
||||
* @param num_poses The number of poses to write to the file.
|
||||
* @param filename The file name to save the results to.
|
||||
*/
|
||||
void write_results(const Values& results, size_t num_poses,
|
||||
const std::string& filename = "ISAM2_city10000.txt") {
|
||||
ofstream outfile;
|
||||
outfile.open(filename);
|
||||
|
||||
for (size_t i = 0; i < num_poses; ++i) {
|
||||
Pose2 out_pose = results.at<Pose2>(X(i));
|
||||
|
||||
outfile << out_pose.x() << " " << out_pose.y() << " " << out_pose.theta()
|
||||
<< std::endl;
|
||||
}
|
||||
outfile.close();
|
||||
std::cout << "output written to " << filename << std::endl;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
int main(int argc, char* argv[]) {
|
||||
ifstream in(findExampleDataFile("T1_city10000_04.txt"));
|
||||
// ifstream in("../data/mh_T1_city10000_04.txt"); //Type #1 only
|
||||
// ifstream in("../data/mh_T3b_city10000_10.txt"); //Type #3 only
|
||||
// ifstream in("../data/mh_T1_T3_city10000_04.txt"); //Type #1 + Type #3
|
||||
|
||||
// ifstream in("../data/mh_All_city10000_groundtruth.txt");
|
||||
|
||||
size_t pose_count = 0;
|
||||
size_t index = 0;
|
||||
|
||||
std::list<double> time_list;
|
||||
|
||||
ISAM2Params parameters;
|
||||
parameters.optimizationParams = gtsam::ISAM2GaussNewtonParams(0.0);
|
||||
parameters.relinearizeThreshold = 0.01;
|
||||
parameters.relinearizeSkip = 1;
|
||||
|
||||
ISAM2* isam2 = new ISAM2(parameters);
|
||||
|
||||
NonlinearFactorGraph* graph = new NonlinearFactorGraph();
|
||||
|
||||
Values init_values;
|
||||
Values results;
|
||||
|
||||
double x = 0.0;
|
||||
double y = 0.0;
|
||||
double rad = 0.0;
|
||||
|
||||
Pose2 prior_pose(x, y, rad);
|
||||
|
||||
init_values.insert(X(0), prior_pose);
|
||||
pose_count++;
|
||||
|
||||
graph->addPrior<Pose2>(X(0), prior_pose, prior_noise_model);
|
||||
|
||||
isam2->update(*graph, init_values);
|
||||
graph->resize(0);
|
||||
init_values.clear();
|
||||
results = isam2->calculateBestEstimate();
|
||||
|
||||
//*
|
||||
size_t key_s = 0;
|
||||
size_t key_t = 0;
|
||||
|
||||
clock_t start_time = clock();
|
||||
string str;
|
||||
while (getline(in, str) && index < max_loop_count) {
|
||||
// cout << str << endl;
|
||||
vector<string> parts;
|
||||
split(parts, str, is_any_of(" "));
|
||||
|
||||
key_s = stoi(parts[1]);
|
||||
key_t = stoi(parts[3]);
|
||||
|
||||
int num_measurements = stoi(parts[5]);
|
||||
vector<Pose2> pose_array(num_measurements);
|
||||
for (int i = 0; i < num_measurements; ++i) {
|
||||
x = stod(parts[6 + 3 * i]);
|
||||
y = stod(parts[7 + 3 * i]);
|
||||
rad = stod(parts[8 + 3 * i]);
|
||||
pose_array[i] = Pose2(x, y, rad);
|
||||
}
|
||||
|
||||
Pose2 odom_pose;
|
||||
if (is_with_ambiguity) {
|
||||
// Get wrong intentionally
|
||||
int id = index % num_measurements;
|
||||
odom_pose = Pose2(pose_array[id]);
|
||||
} else {
|
||||
odom_pose = pose_array[0];
|
||||
}
|
||||
|
||||
if (key_s == key_t - 1) { // new X(key)
|
||||
init_values.insert(X(key_t), results.at<Pose2>(X(key_s)) * odom_pose);
|
||||
pose_count++;
|
||||
} else { // loop
|
||||
index++;
|
||||
}
|
||||
graph->add(
|
||||
BetweenFactor<Pose2>(X(key_s), X(key_t), odom_pose, pose_noise_model));
|
||||
|
||||
isam2->update(*graph, init_values);
|
||||
graph->resize(0);
|
||||
init_values.clear();
|
||||
results = isam2->calculateBestEstimate();
|
||||
|
||||
// Print loop index and time taken in processor clock ticks
|
||||
if (index % 50 == 0 && key_s != key_t - 1) {
|
||||
std::cout << "index: " << index << std::endl;
|
||||
std::cout << "acc_time: " << time_list.back() << std::endl;
|
||||
}
|
||||
|
||||
if (key_s == key_t - 1) {
|
||||
clock_t cur_time = clock();
|
||||
time_list.push_back(cur_time - start_time);
|
||||
}
|
||||
|
||||
if (time_list.size() % 100 == 0 && (key_s == key_t - 1)) {
|
||||
string step_file_idx = std::to_string(100000 + time_list.size());
|
||||
|
||||
ofstream step_outfile;
|
||||
string step_file_name = "step_files/ISAM2_city10000_S" + step_file_idx;
|
||||
step_outfile.open(step_file_name + ".txt");
|
||||
for (size_t i = 0; i < (key_t + 1); ++i) {
|
||||
Pose2 out_pose = results.at<Pose2>(X(i));
|
||||
step_outfile << out_pose.x() << " " << out_pose.y() << " "
|
||||
<< out_pose.theta() << endl;
|
||||
}
|
||||
step_outfile.close();
|
||||
}
|
||||
}
|
||||
|
||||
clock_t end_time = clock();
|
||||
clock_t total_time = end_time - start_time;
|
||||
cout << "total_time: " << total_time << endl;
|
||||
|
||||
/// Write results to file
|
||||
write_results(results, (key_t + 1));
|
||||
|
||||
ofstream outfile_time;
|
||||
std::string time_file_name = "ISAM2_city10000_time.txt";
|
||||
outfile_time.open(time_file_name);
|
||||
for (auto acc_time : time_list) {
|
||||
outfile_time << acc_time << std::endl;
|
||||
}
|
||||
outfile_time.close();
|
||||
cout << "output " << time_file_name << " file." << endl;
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,28 @@
|
|||
clear;
|
||||
|
||||
gt = dlmread('Data/ISAM2_GT_city10000.txt');
|
||||
|
||||
eh_poses = dlmread('../build/examples/ISAM2_city10000.txt');
|
||||
|
||||
h_poses = dlmread('../build/examples/HybridISAM_city10000.txt');
|
||||
|
||||
% Plot the same number of GT poses as estimated ones
|
||||
% gt = gt(1:size(eh_poses, 1), :);
|
||||
gt = gt(1:size(h_poses, 1), :);
|
||||
eh_poses = eh_poses(1:size(h_poses, 1), :);
|
||||
|
||||
|
||||
figure(1)
|
||||
hold on;
|
||||
axis equal;
|
||||
axis([-65 65 -75 60])
|
||||
plot(gt(:,1), gt(:,2), '--', 'LineWidth', 4, 'color', [0.1 0.7 0.1 0.5]);
|
||||
% hold off;
|
||||
|
||||
% figure(2)
|
||||
% hold on;
|
||||
% axis equal;
|
||||
% axis([-65 65 -75 60])
|
||||
plot(eh_poses(:,1), eh_poses(:,2), '-', 'LineWidth', 2, 'color', [0.9 0.1 0. 0.4]);
|
||||
plot(h_poses(:,1), h_poses(:,2), '-', 'LineWidth', 2, 'color', [0.1 0.1 0.9 0.4]);
|
||||
hold off;
|
|
@ -247,7 +247,7 @@ namespace gtsam {
|
|||
/* ************************************************************************ */
|
||||
std::vector<double> DecisionTreeFactor::probabilities() const {
|
||||
// Set of all keys
|
||||
std::set<Key> allKeys(keys().begin(), keys().end());
|
||||
KeySet allKeys(keys().begin(), keys().end());
|
||||
|
||||
std::vector<double> probs;
|
||||
|
||||
|
@ -260,7 +260,7 @@ namespace gtsam {
|
|||
*/
|
||||
auto op = [&](const Assignment<Key>& a, double p) {
|
||||
// Get all the keys in the current assignment
|
||||
std::set<Key> assignment_keys;
|
||||
KeySet assignment_keys;
|
||||
for (auto&& [k, _] : a) {
|
||||
assignment_keys.insert(k);
|
||||
}
|
||||
|
@ -458,13 +458,13 @@ namespace gtsam {
|
|||
|
||||
auto op = [&](const Assignment<Key>& a, double p) {
|
||||
// Get all the keys in the current assignment
|
||||
std::set<Key> assignment_keys;
|
||||
KeySet assignment_keys;
|
||||
for (auto&& [k, _] : a) {
|
||||
assignment_keys.insert(k);
|
||||
}
|
||||
|
||||
// Find the keys missing in the assignment
|
||||
std::vector<Key> diff;
|
||||
KeyVector diff;
|
||||
std::set_difference(allKeys.begin(), allKeys.end(),
|
||||
assignment_keys.begin(), assignment_keys.end(),
|
||||
std::back_inserter(diff));
|
||||
|
|
|
@ -66,7 +66,9 @@ HybridBayesNet HybridBayesNet::prune(
|
|||
pruned.prune(maxNrLeaves);
|
||||
|
||||
DiscreteValues deadModesValues;
|
||||
if (deadModeThreshold.has_value()) {
|
||||
// If we have a dead mode threshold and discrete variables left after pruning,
|
||||
// then we run dead mode removal.
|
||||
if (deadModeThreshold.has_value() && pruned.keys().size() > 0) {
|
||||
DiscreteMarginals marginals(DiscreteFactorGraph{pruned});
|
||||
for (auto dkey : pruned.discreteKeys()) {
|
||||
Vector probabilities = marginals.marginalProbabilities(dkey);
|
||||
|
|
|
@ -327,6 +327,8 @@ discreteElimination(const HybridGaussianFactorGraph &factors,
|
|||
gttic_(EliminateDiscreteFormDiscreteConditional);
|
||||
#endif
|
||||
// Check type of product, and get as TableFactor for efficiency.
|
||||
// Use object instead of pointer since we need it
|
||||
// for the TableDistribution constructor.
|
||||
TableFactor p;
|
||||
if (auto tf = std::dynamic_pointer_cast<TableFactor>(product)) {
|
||||
p = *tf;
|
||||
|
@ -334,11 +336,12 @@ discreteElimination(const HybridGaussianFactorGraph &factors,
|
|||
p = TableFactor(product->toDecisionTreeFactor());
|
||||
}
|
||||
auto conditional = std::make_shared<TableDistribution>(p);
|
||||
|
||||
#if GTSAM_HYBRID_TIMING
|
||||
gttoc_(EliminateDiscreteFormDiscreteConditional);
|
||||
#endif
|
||||
|
||||
DiscreteFactor::shared_ptr sum = product->sum(frontalKeys);
|
||||
DiscreteFactor::shared_ptr sum = p.sum(frontalKeys);
|
||||
|
||||
return {std::make_shared<HybridConditional>(conditional), sum};
|
||||
|
||||
|
|
Loading…
Reference in New Issue