Cherrypick transitivity fix for DsfTrackGenerator
parent
13c7dafba3
commit
12f919dc55
|
@ -20,6 +20,7 @@
|
|||
|
||||
#include <algorithm>
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
@ -38,7 +39,8 @@ static DSFMapIndexPair generateDSF(const MatchIndicesMap& matches) {
|
|||
// Image pair is (i1,i2).
|
||||
size_t i1 = pair_indices.first;
|
||||
size_t i2 = pair_indices.second;
|
||||
for (size_t k = 0; k < corr_indices.rows(); k++) {
|
||||
size_t m = static_cast<size_t>(corr_indices.rows());
|
||||
for (size_t k = 0; k < m; k++) {
|
||||
// Measurement indices are found in a single matrix row, as (k1,k2).
|
||||
size_t k1 = corr_indices(k, 0), k2 = corr_indices(k, 1);
|
||||
// Unique key for DSF is (i,k), representing keypoint index in an image.
|
||||
|
@ -128,7 +130,7 @@ std::vector<SfmTrack2d> tracksFromPairwiseMatches(
|
|||
}
|
||||
|
||||
// TODO(johnwlambert): return the Transitivity failure percentage here.
|
||||
return tracks2d;
|
||||
return validTracks;
|
||||
}
|
||||
|
||||
} // namespace gtsfm
|
||||
|
|
|
@ -4,18 +4,42 @@ Authors: John Lambert
|
|||
"""
|
||||
|
||||
import unittest
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import gtsam
|
||||
import numpy as np
|
||||
from gtsam import (IndexPair, KeypointsVector, MatchIndicesMap, Point2,
|
||||
SfmMeasurementVector, SfmTrack2d)
|
||||
from gtsam.gtsfm import Keypoints
|
||||
from gtsam.utils.test_case import GtsamTestCase
|
||||
|
||||
import gtsam
|
||||
from gtsam import IndexPair, Point2, SfmTrack2d
|
||||
|
||||
|
||||
class TestDsfTrackGenerator(GtsamTestCase):
|
||||
"""Tests for DsfTrackGenerator."""
|
||||
|
||||
def test_generate_tracks_from_pairwise_matches_nontransitive(
|
||||
self,
|
||||
) -> None:
|
||||
"""Tests DSF for non-transitive matches.
|
||||
|
||||
Test will result in no tracks since nontransitive tracks are naively discarded by DSF.
|
||||
"""
|
||||
keypoints_list = get_dummy_keypoints_list()
|
||||
nontransitive_matches_dict = get_nontransitive_matches() # contains one non-transitive track
|
||||
|
||||
# For each image pair (i1,i2), we provide a (K,2) matrix
|
||||
# of corresponding keypoint indices (k1,k2).
|
||||
matches_dict = {}
|
||||
for (i1,i2), corr_idxs in nontransitive_matches_dict.items():
|
||||
matches_dict[IndexPair(i1, i2)] = corr_idxs
|
||||
|
||||
tracks = gtsam.gtsfm.tracksFromPairwiseMatches(
|
||||
matches_dict,
|
||||
keypoints_list,
|
||||
verbose=True,
|
||||
)
|
||||
self.assertEqual(len(tracks), 0, "Tracks not filtered correctly")
|
||||
|
||||
def test_track_generation(self) -> None:
|
||||
"""Ensures that DSF generates three tracks from measurements
|
||||
in 3 images (H=200,W=400)."""
|
||||
|
@ -23,14 +47,14 @@ class TestDsfTrackGenerator(GtsamTestCase):
|
|||
kps_i1 = Keypoints(np.array([[50.0, 60], [70, 80], [90, 100]]))
|
||||
kps_i2 = Keypoints(np.array([[110.0, 120], [130, 140]]))
|
||||
|
||||
keypoints_list = KeypointsVector()
|
||||
keypoints_list = []
|
||||
keypoints_list.append(kps_i0)
|
||||
keypoints_list.append(kps_i1)
|
||||
keypoints_list.append(kps_i2)
|
||||
|
||||
# For each image pair (i1,i2), we provide a (K,2) matrix
|
||||
# of corresponding image indices (k1,k2).
|
||||
matches_dict = MatchIndicesMap()
|
||||
# of corresponding keypoint indices (k1,k2).
|
||||
matches_dict = {}
|
||||
matches_dict[IndexPair(0, 1)] = np.array([[0, 0], [1, 1]])
|
||||
matches_dict[IndexPair(1, 2)] = np.array([[2, 0], [1, 1]])
|
||||
|
||||
|
@ -86,12 +110,80 @@ class TestSfmTrack2d(GtsamTestCase):
|
|||
|
||||
def test_sfm_track_2d_constructor(self) -> None:
|
||||
"""Test construction of 2D SfM track."""
|
||||
measurements = SfmMeasurementVector()
|
||||
measurements = []
|
||||
measurements.append((0, Point2(10, 20)))
|
||||
track = SfmTrack2d(measurements=measurements)
|
||||
track.measurement(0)
|
||||
assert track.numberMeasurements() == 1
|
||||
|
||||
|
||||
def get_dummy_keypoints_list() -> List[Keypoints]:
|
||||
""" """
|
||||
img1_kp_coords = np.array([[1, 1], [2, 2], [3, 3.]])
|
||||
img1_kp_scale = np.array([6.0, 9.0, 8.5])
|
||||
img2_kp_coords = np.array(
|
||||
[
|
||||
[1, 1.],
|
||||
[2, 2],
|
||||
[3, 3],
|
||||
[4, 4],
|
||||
[5, 5],
|
||||
[6, 6],
|
||||
[7, 7],
|
||||
[8, 8],
|
||||
]
|
||||
)
|
||||
img3_kp_coords = np.array(
|
||||
[
|
||||
[1, 1.],
|
||||
[2, 2],
|
||||
[3, 3],
|
||||
[4, 4],
|
||||
[5, 5],
|
||||
[6, 6],
|
||||
[7, 7],
|
||||
[8, 8],
|
||||
[9, 9],
|
||||
[10, 10],
|
||||
]
|
||||
)
|
||||
img4_kp_coords = np.array(
|
||||
[
|
||||
[1, 1.],
|
||||
[2, 2],
|
||||
[3, 3],
|
||||
[4, 4],
|
||||
[5, 5],
|
||||
]
|
||||
)
|
||||
keypoints_list = [
|
||||
Keypoints(coordinates=img1_kp_coords),
|
||||
Keypoints(coordinates=img2_kp_coords),
|
||||
Keypoints(coordinates=img3_kp_coords),
|
||||
Keypoints(coordinates=img4_kp_coords),
|
||||
]
|
||||
return keypoints_list
|
||||
|
||||
|
||||
def get_nontransitive_matches() -> Dict[Tuple[int, int], np.ndarray]:
|
||||
"""Set up correspondences for each (i1,i2) pair that violates transitivity.
|
||||
|
||||
(i=0, k=0) (i=0, k=1)
|
||||
| \\ |
|
||||
| \\ |
|
||||
(i=1, k=2)--(i=2,k=3)--(i=3, k=4)
|
||||
|
||||
Transitivity is violated due to the match between frames 0 and 3.
|
||||
"""
|
||||
nontransitive_matches_dict = {
|
||||
(0, 1): np.array([[0, 2]]),
|
||||
(1, 2): np.array([[2, 3]]),
|
||||
(0, 2): np.array([[0, 3]]),
|
||||
(0, 3): np.array([[1, 4]]),
|
||||
(2, 3): np.array([[3, 4]]),
|
||||
}
|
||||
return nontransitive_matches_dict
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
||||
|
|
Loading…
Reference in New Issue