clang-formatted, changed getFoobar() to foobar()
parent
136a7cdfd0
commit
12d422341d
|
@ -13,7 +13,8 @@
|
|||
* @file LIEKF.h
|
||||
* @brief Base and classes for Left Invariant Extended Kalman Filters
|
||||
*
|
||||
* Templates are implemented for a Left Invariant Extended Kalman Filter operating on Lie Groups.
|
||||
* Templates are implemented for a Left Invariant Extended Kalman Filter
|
||||
* operating on Lie Groups.
|
||||
*
|
||||
*
|
||||
* @date April 24, 2025
|
||||
|
@ -22,59 +23,66 @@
|
|||
*/
|
||||
|
||||
#pragma once
|
||||
#include <functional>
|
||||
#include <gtsam/base/Matrix.h>
|
||||
#include <gtsam/base/Vector.h>
|
||||
#include <gtsam/base/OptionalJacobian.h>
|
||||
#include <gtsam/base/Vector.h>
|
||||
|
||||
#include <Eigen/Dense>
|
||||
#include <functional>
|
||||
namespace gtsam {
|
||||
|
||||
/**
|
||||
* @brief Base class for Left Invariant Extended Kalman Filter (LIEKF)
|
||||
*
|
||||
* This class provides the prediction and update structure based on control inputs and a measurement function.
|
||||
*
|
||||
* @tparam LieGroup Lie group used for state representation (e.g., Pose2, Pose3, NavState)
|
||||
* @tparam Measurement Type of measurement (e.g. Vector3 for a GPS measurement for 3D position)
|
||||
*/
|
||||
* @brief Base class for Left Invariant Extended Kalman Filter (LIEKF)
|
||||
*
|
||||
* This class provides the prediction and update structure based on control
|
||||
* inputs and a measurement function.
|
||||
*
|
||||
* @tparam LieGroup Lie group used for state representation (e.g., Pose2,
|
||||
* Pose3, NavState)
|
||||
* @tparam Measurement Type of measurement (e.g. Vector3 for a GPS measurement
|
||||
* for 3D position)
|
||||
*/
|
||||
|
||||
template <typename LieGroup, typename Measurement>
|
||||
class LIEKF {
|
||||
public:
|
||||
static constexpr int n =
|
||||
traits<LieGroup>::dimension; ///< Dimension of the state.
|
||||
static constexpr int m =
|
||||
traits<Measurement>::dimension; ///< Dimension of the measurement.
|
||||
|
||||
public:
|
||||
static constexpr int n = traits<LieGroup>::dimension; ///< Dimension of the state.
|
||||
static constexpr int m = traits<Measurement>::dimension; ///< Dimension of the measurement.
|
||||
|
||||
using MeasurementFunction = std::function<Measurement(const LieGroup&, OptionalJacobian<m, n>)>; ///< Typedef for the measurement function.
|
||||
using MatrixN = Eigen::Matrix<double, n, n>; ///< Typedef for the identity matrix.
|
||||
using MeasurementFunction = std::function<Measurement(
|
||||
const LieGroup&,
|
||||
OptionalJacobian<m, n>)>; ///< Typedef for the measurement function.
|
||||
using MatrixN =
|
||||
Eigen::Matrix<double, n, n>; ///< Typedef for the identity matrix.
|
||||
|
||||
/**
|
||||
* @brief Construct with a measurement function
|
||||
* @param X0 Initial State
|
||||
* @param P0 Initial Covariance
|
||||
* @param h Measurement function
|
||||
*/
|
||||
LIEKF(const LieGroup& X0, const Matrix& P0, MeasurementFunction& h) // X_ P_
|
||||
* @brief Construct with a measurement function
|
||||
* @param X0 Initial State
|
||||
* @param P0 Initial Covariance
|
||||
* @param h Measurement function
|
||||
*/
|
||||
LIEKF(const LieGroup& X0, const Matrix& P0, MeasurementFunction& h) // X_ P_
|
||||
: X(X0), P(P0), h_(h) {}
|
||||
|
||||
/**
|
||||
* @brief Get current state estimate.
|
||||
* @return Const reference to the state estiamte.
|
||||
*/
|
||||
const LieGroup& state() const { return X; }
|
||||
|
||||
/**
|
||||
* @brief Get current state estimate.
|
||||
* @return Const reference to the state estiamte.
|
||||
*/
|
||||
const LieGroup& getState() const { return X; }
|
||||
* @brief Get current covariance estimate.
|
||||
* @return Const reference to the covariance estimate.
|
||||
*/
|
||||
const Matrix& covariance() const { return P; }
|
||||
|
||||
/**
|
||||
* @brief Get current covariance estimate.
|
||||
* @return Const reference to the covariance estimate.
|
||||
*/
|
||||
const Matrix& getCovariance() const { return P; }
|
||||
|
||||
/**
|
||||
* @brief Prediction stage with a Lie group element U.
|
||||
* @param U Lie group control input
|
||||
* @param Q Process noise covariance matrix.
|
||||
*/
|
||||
* @brief Prediction stage with a Lie group element U.
|
||||
* @param U Lie group control input
|
||||
* @param Q Process noise covariance matrix.
|
||||
*/
|
||||
void predict(const LieGroup& U, const Matrix& Q) {
|
||||
LieGroup::Jacobian A;
|
||||
X = X.compose(U, A);
|
||||
|
@ -82,83 +90,92 @@ public:
|
|||
}
|
||||
|
||||
/**
|
||||
* @brief Prediction stage with a control vector u and a time interval dt.
|
||||
* @param u Control vector element
|
||||
* @param dt Time interval
|
||||
* @param Q Process noise covariance matrix.
|
||||
*/
|
||||
* @brief Prediction stage with a control vector u and a time interval dt.
|
||||
* @param u Control vector element
|
||||
* @param dt Time interval
|
||||
* @param Q Process noise covariance matrix.
|
||||
*/
|
||||
void predict(const Vector& u, double dt, const Matrix& Q) {
|
||||
predict(LieGroup::Expmap(u*dt), Q);d
|
||||
predict(LieGroup::Expmap(u * dt), Q);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Update stage using a measurement and measurement covariance.
|
||||
* @param z Measurement
|
||||
* @param R Measurement noise covariance matrix.
|
||||
*/
|
||||
* @brief Update stage using a measurement and measurement covariance.
|
||||
* @param z Measurement
|
||||
* @param R Measurement noise covariance matrix.
|
||||
*/
|
||||
void update(const Measurement& z, const Matrix& R) {
|
||||
Matrix H(m, n);
|
||||
Vector y = h_(X, H)-z;
|
||||
Vector y = h_(X, H) - z;
|
||||
Matrix S = H * P * H.transpose() + R;
|
||||
Matrix K = P * H.transpose() * S.inverse();
|
||||
X = X.expmap(-K * y);
|
||||
P = (I_n - K * H) * P; // move Identity to be a constant.
|
||||
P = (I_n - K * H) * P; // move Identity to be a constant.
|
||||
}
|
||||
|
||||
protected:
|
||||
LieGroup X; ///< Current state estimate.
|
||||
Matrix P; ///< Current covariance estimate.
|
||||
|
||||
private:
|
||||
MeasurementFunction h_; ///< Measurement function
|
||||
static const MatrixN I_n; ///< A nxn identity matrix used in the update stage of the LIEKF.
|
||||
protected:
|
||||
LieGroup X; ///< Current state estimate.
|
||||
Matrix P; ///< Current covariance estimate.
|
||||
|
||||
private:
|
||||
MeasurementFunction h_; ///< Measurement function
|
||||
static const MatrixN
|
||||
I_n; ///< A nxn identity matrix used in the update stage of the LIEKF.
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Create the static identity matrix I_n of size nxn for use in the update stage.
|
||||
* @tparam LieGroup Lie group used for state representation (e.g., Pose2, Pose3, NavState)
|
||||
* @tparam Measurement Type of measurement (e.g. Vector3 for a GPS measurement for 3D position)
|
||||
*/
|
||||
* @brief Create the static identity matrix I_n of size nxn for use in the
|
||||
* update stage.
|
||||
* @tparam LieGroup Lie group used for state representation (e.g., Pose2,
|
||||
* Pose3, NavState)
|
||||
* @tparam Measurement Type of measurement (e.g. Vector3 for a GPS measurement
|
||||
* for 3D position)
|
||||
*/
|
||||
template <typename LieGroup, typename Measurement>
|
||||
const typename LIEKF<LieGroup, Measurement>::MatrixN LIEKF<LieGroup, Measurement>::I_n
|
||||
= typename LIEKF<LieGroup, Measurement>::MatrixN::Identity();
|
||||
const typename LIEKF<LieGroup, Measurement>::MatrixN
|
||||
LIEKF<LieGroup, Measurement>::I_n =
|
||||
typename LIEKF<LieGroup, Measurement>::MatrixN::Identity();
|
||||
|
||||
/**
|
||||
* @brief General Left Invariant Extended Kalman Filter with dynamics function.
|
||||
*
|
||||
* This class extends the LIEKF class to include a dynamics function f. The dynamics maps
|
||||
* a state and control vector to a tangent vector xi.
|
||||
* This class extends the LIEKF class to include a dynamics function f. The
|
||||
* dynamics maps a state and control vector to a tangent vector xi.
|
||||
*
|
||||
* @tparam LieGroup The Lie group type for the state.
|
||||
* @tparam Measurement The type of the measurement.
|
||||
* @tparam _p The dimension of the control vector.
|
||||
*/
|
||||
template <typename LieGroup, typename Measurement, size_t _p>
|
||||
class GeneralLIEKF:public LIEKF<LieGroup, Measurement> {
|
||||
class GeneralLIEKF : public LIEKF<LieGroup, Measurement> {
|
||||
public:
|
||||
using Control = Eigen::Matrix<double, _p, 1>; ///< Typedef for the control vector.
|
||||
using TangentVector = typename traits<LieGroup>::TangentVector; ///< Typedef for the tangent vector.
|
||||
using Dynamics = std::function<TangentVector(const LieGroup&, const Control&, ///< Typedef for the dynamics function.
|
||||
OptionalJacobian<n, n>)>;
|
||||
|
||||
using Control =
|
||||
Eigen::Matrix<double, _p, 1>; ///< Typedef for the control vector.
|
||||
using TangentVector =
|
||||
typename traits<LieGroup>::TangentVector; ///< Typedef for the tangent
|
||||
///< vector.
|
||||
using Dynamics = std::function<TangentVector(
|
||||
const LieGroup&, const Control&, ///< Typedef for the dynamics function.
|
||||
OptionalJacobian<n, n>)>;
|
||||
|
||||
/**
|
||||
* @brief Construct with general dynamics
|
||||
* @param X0 Initial State
|
||||
* @param P0 Initial Covariance
|
||||
* @param f Dynamics function that depends on state and control vector
|
||||
* @param h Measurement function
|
||||
*/
|
||||
GeneralLIEKF(const LieGroup& X0, const Matrix& P0, Dynamics& f, MeasurementFunction&
|
||||
h) : LIEKF(X0, P0, h), f_(f) {}
|
||||
* @brief Construct with general dynamics
|
||||
* @param X0 Initial State
|
||||
* @param P0 Initial Covariance
|
||||
* @param f Dynamics function that depends on state and control vector
|
||||
* @param h Measurement function
|
||||
*/
|
||||
GeneralLIEKF(const LieGroup& X0, const Matrix& P0, Dynamics& f,
|
||||
MeasurementFunction& h)
|
||||
: LIEKF(X0, P0, h), f_(f) {}
|
||||
|
||||
/**
|
||||
* @brief Prediction stage with a dynamics function that calculates the tangent vector xi in the tangent space.
|
||||
* @param u Control vector element
|
||||
* @param dt Time interval
|
||||
* @param Q Process noise covariance matrix.
|
||||
*/
|
||||
* @brief Prediction stage with a dynamics function that calculates the
|
||||
* tangent vector xi in the tangent space.
|
||||
* @param u Control vector element
|
||||
* @param dt Time interval
|
||||
* @param Q Process noise covariance matrix.
|
||||
*/
|
||||
void predict(const Control& u, double dt, const Matrix& Q) {
|
||||
LieGroup::Jacobian H;
|
||||
const TangentVector xi = f_(X, u, H);
|
||||
|
@ -167,10 +184,9 @@ h) : LIEKF(X0, P0, h), f_(f) {}
|
|||
X = X.compose(U);
|
||||
P = A * P * A.transpose() + Q;
|
||||
}
|
||||
private:
|
||||
Dynamics f_; ///< Dynamics function.
|
||||
|
||||
private:
|
||||
Dynamics f_; ///< Dynamics function.
|
||||
};
|
||||
|
||||
}// ends namespace
|
||||
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
Loading…
Reference in New Issue