Move TransformCovariance functor into lie.h
parent
34e429af9e
commit
1236ab6c8e
|
|
@ -161,6 +161,16 @@ struct LieGroup {
|
|||
return v;
|
||||
}
|
||||
|
||||
// Functor for transforming covariance of Class
|
||||
class TransformCovariance
|
||||
{
|
||||
private:
|
||||
typename Class::Jacobian adjointMap_;
|
||||
public:
|
||||
explicit TransformCovariance(const Class &X) : adjointMap_{X.AdjointMap()} {}
|
||||
typename Class::Jacobian operator()(const typename Class::Jacobian &covariance)
|
||||
{ return adjointMap_ * covariance * adjointMap_.transpose(); }
|
||||
};
|
||||
};
|
||||
|
||||
/// tag to assert a type is a Lie group
|
||||
|
|
|
|||
|
|
@ -845,71 +845,68 @@ TEST(Pose2 , TransformCovariance3) {
|
|||
|
||||
// rotate
|
||||
{
|
||||
auto cov = GenerateFullCovariance<Pose2>({{0.1, 0.3, 0.7}});
|
||||
auto cov_trans = RotateTranslate<Pose2>({{90.}}, {{}}, cov);
|
||||
auto cov = FullCovarianceFromSigmas<Pose2>({0.1, 0.3, 0.7});
|
||||
auto transformed = Pose2::TransformCovariance{{0., 0., 90 * degree}}(cov);
|
||||
// interchange x and y axes
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(1, 1), cov(0, 0), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(0, 0), cov(1, 1), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(2, 2), cov(2, 2), 1e-9);
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(1, 0), -cov(1, 0), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(2, 0), -cov(2, 1), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(2, 1), cov(2, 0), 1e-9);
|
||||
EXPECT(assert_equal(
|
||||
Vector3{cov(1, 1), cov(0, 0), cov(2, 2)},
|
||||
Vector3{transformed.diagonal()}));
|
||||
EXPECT(assert_equal(
|
||||
Vector3{-cov(1, 0), -cov(2, 1), cov(2, 0)},
|
||||
Vector3{transformed(1, 0), transformed(2, 0), transformed(2, 1)}));
|
||||
}
|
||||
|
||||
// translate along x with uncertainty in x
|
||||
{
|
||||
auto cov = GenerateOneVariableCovariance<Pose2>(0, 0.1);
|
||||
auto cov_trans = RotateTranslate<Pose2>({{}}, {{20., 0.}}, cov);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(0, 0), 0.1 * 0.1, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(1, 1), 0., 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(2, 2), 0., 1e-9);
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(1, 0), 0., 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(2, 0), 0., 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(2, 1), 0., 1e-9);
|
||||
auto cov = SingleVariableCovarianceFromSigma<Pose2>(0, 0.1);
|
||||
auto transformed = Pose2::TransformCovariance{{20., 0., 0.}}(cov);
|
||||
// No change
|
||||
EXPECT(assert_equal(cov, transformed));
|
||||
}
|
||||
|
||||
// translate along x with uncertainty in y
|
||||
{
|
||||
auto cov = GenerateOneVariableCovariance<Pose2>(1, 0.1);
|
||||
auto cov_trans = RotateTranslate<Pose2>({{}}, {{20., 0.}}, cov);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(0, 0), 0., 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(1, 1), 0.1 * 0.1, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(2, 2), 0., 1e-9);
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(1, 0), 0., 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(2, 0), 0., 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(2, 1), 0., 1e-9);
|
||||
auto cov = SingleVariableCovarianceFromSigma<Pose2>(1, 0.1);
|
||||
auto transformed = Pose2::TransformCovariance{{20., 0., 0.}}(cov);
|
||||
// No change
|
||||
EXPECT(assert_equal(cov, transformed));
|
||||
}
|
||||
|
||||
// translate along x with uncertainty in theta
|
||||
{
|
||||
auto cov = GenerateOneVariableCovariance<Pose2>(2, 0.1);
|
||||
auto cov_trans = RotateTranslate<Pose2>({{}}, {{20., 0.}}, cov);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(2, 1), -0.1 * 0.1 * 20., 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(1, 1), 0.1 * 0.1 * 20. * 20., 1e-9);
|
||||
auto cov = SingleVariableCovarianceFromSigma<Pose2>(2, 0.1);
|
||||
auto transformed = Pose2::TransformCovariance{{20., 0., 0.}}(cov);
|
||||
EXPECT(assert_equal(
|
||||
Vector3{0., 0.1 * 0.1 * 20. * 20., 0.1 * 0.1},
|
||||
Vector3{transformed.diagonal()}));
|
||||
EXPECT(assert_equal(
|
||||
Vector3{0., 0., -0.1 * 0.1 * 20.},
|
||||
Vector3{transformed(1, 0), transformed(2, 0), transformed(2, 1)}));
|
||||
}
|
||||
|
||||
// rotate and translate along x with uncertainty in x
|
||||
{
|
||||
auto cov = GenerateOneVariableCovariance<Pose2>(0, 0.1);
|
||||
auto cov_trans = RotateTranslate<Pose2>({{90.}}, {{20., 0.}}, cov);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(0, 0), 0., 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(1, 1), 0.1 * 0.1, 1e-9);
|
||||
auto cov = SingleVariableCovarianceFromSigma<Pose2>(0, 0.1);
|
||||
auto transformed = Pose2::TransformCovariance{{20., 0., 90 * degree}}(cov);
|
||||
// interchange x and y axes
|
||||
EXPECT(assert_equal(
|
||||
Vector3{cov(1, 1), cov(0, 0), cov(2, 2)},
|
||||
Vector3{transformed.diagonal()}));
|
||||
EXPECT(assert_equal(
|
||||
Vector3{Z_3x1},
|
||||
Vector3{transformed(1, 0), transformed(2, 0), transformed(2, 1)}));
|
||||
}
|
||||
|
||||
// rotate and translate along x with uncertainty in theta
|
||||
{
|
||||
auto cov = GenerateOneVariableCovariance<Pose2>(2, 0.1);
|
||||
auto cov_trans = RotateTranslate<Pose2>({{90.}}, {{20., 0.}}, cov);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(0, 0), 0., 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(1, 1), 0.1 * 0.1 * 20. * 20., 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(2, 2), 0.1 * 0.1, 1e-9);
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(1, 0), 0., 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(2, 0), 0., 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(2, 1), -0.1 * 0.1 * 20., 1e-9);
|
||||
auto cov = SingleVariableCovarianceFromSigma<Pose2>(2, 0.1);
|
||||
auto transformed = Pose2::TransformCovariance{{20., 0., 90 * degree}}(cov);
|
||||
EXPECT(assert_equal(
|
||||
Vector3{0., 0.1 * 0.1 * 20. * 20., 0.1 * 0.1},
|
||||
Vector3{transformed.diagonal()}));
|
||||
EXPECT(assert_equal(
|
||||
Vector3{0., 0., -0.1 * 0.1 * 20.},
|
||||
Vector3{transformed(1, 0), transformed(2, 0), transformed(2, 1)}));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -885,43 +885,41 @@ TEST(Pose3, TransformCovariance6MapTo2d) {
|
|||
// Create 3d scenarios that map to 2d configurations and compare with Pose2 results.
|
||||
using namespace test_pose_adjoint_map;
|
||||
|
||||
std::array<double, Pose2::dimension> s{{0.1, 0.3, 0.7}};
|
||||
std::array<double, Pose2::Rotation::dimension> r{{31.}};
|
||||
std::array<double, Pose2::Translation::dimension> t{{1.1, 1.5}};
|
||||
auto cov2 = GenerateFullCovariance<Pose2>({{0.1, 0.3, 0.7}});
|
||||
auto cov2_trans = RotateTranslate<Pose2>(r, t, cov2);
|
||||
Vector3 s2{0.1, 0.3, 0.7};
|
||||
Pose2 p2{1.1, 1.5, 31. * degree};
|
||||
auto cov2 = FullCovarianceFromSigmas<Pose2>(s2);
|
||||
auto transformed2 = Pose2::TransformCovariance{p2}(cov2);
|
||||
|
||||
auto match_cov3_to_cov2 = [&](int r_axis, int spatial_axis0, int spatial_axis1,
|
||||
auto match_cov3_to_cov2 = [&](int spatial_axis0, int spatial_axis1, int r_axis,
|
||||
const Pose2::Jacobian &cov2, const Pose3::Jacobian &cov3) -> void
|
||||
{
|
||||
EXPECT_DOUBLES_EQUAL(cov2(0, 0), cov3(spatial_axis0, spatial_axis0), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov2(1, 1), cov3(spatial_axis1, spatial_axis1), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov2(2, 2), cov3(r_axis, r_axis), 1e-9);
|
||||
|
||||
EXPECT_DOUBLES_EQUAL(cov2(1, 0), cov3(spatial_axis1, spatial_axis0), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov2(2, 1), cov3(r_axis, spatial_axis1), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov2(2, 0), cov3(r_axis, spatial_axis0), 1e-9);
|
||||
EXPECT(assert_equal(
|
||||
Vector3{cov2.diagonal()},
|
||||
Vector3{cov3(spatial_axis0, spatial_axis0), cov3(spatial_axis1, spatial_axis1), cov3(r_axis, r_axis)}));
|
||||
EXPECT(assert_equal(
|
||||
Vector3{cov2(1, 0), cov2(2, 0), cov2(2, 1)},
|
||||
Vector3{cov3(spatial_axis1, spatial_axis0), cov3(r_axis, spatial_axis0), cov3(r_axis, spatial_axis1)}));
|
||||
};
|
||||
|
||||
// rotate around x axis
|
||||
{
|
||||
auto cov3 = GenerateFullCovariance<Pose3>({{s[2], 0., 0., 0., s[0], s[1]}});
|
||||
auto cov3_trans = RotateTranslate<Pose3>({{r[0], 0., 0.}}, {{0., t[0], t[1]}}, cov3);
|
||||
match_cov3_to_cov2(0, 4, 5, cov2_trans, cov3_trans);
|
||||
auto cov3 = FullCovarianceFromSigmas<Pose3>((Vector6{} << s2(2), 0., 0., 0., s2(0), s2(1)).finished());
|
||||
auto transformed3 = Pose3::TransformCovariance{{Rot3::RzRyRx(p2.theta(), 0., 0.), {0., p2.x(), p2.y()}}}(cov3);
|
||||
match_cov3_to_cov2(4, 5, 0, transformed2, transformed3);
|
||||
}
|
||||
|
||||
// rotate around y axis
|
||||
{
|
||||
auto cov3 = GenerateFullCovariance<Pose3>({{0., s[2], 0., s[1], 0., s[0]}});
|
||||
auto cov3_trans = RotateTranslate<Pose3>({{0., r[0], 0.}}, {{t[1], 0., t[0]}}, cov3);
|
||||
match_cov3_to_cov2(1, 5, 3, cov2_trans, cov3_trans);
|
||||
auto cov3 = FullCovarianceFromSigmas<Pose3>((Vector6{} << 0., s2(2), 0., s2(1), 0., s2(0)).finished());
|
||||
auto transformed3 = Pose3::TransformCovariance{{Rot3::RzRyRx(0., p2.theta(), 0.), {p2.y(), 0., p2.x()}}}(cov3);
|
||||
match_cov3_to_cov2(5, 3, 1, transformed2, transformed3);
|
||||
}
|
||||
|
||||
// rotate around z axis
|
||||
{
|
||||
auto cov3 = GenerateFullCovariance<Pose3>({{0., 0., s[2], s[0], s[1], 0.}});
|
||||
auto cov3_trans = RotateTranslate<Pose3>({{0., 0., r[0]}}, {{t[0], t[1], 0.}}, cov3);
|
||||
match_cov3_to_cov2(2, 3, 4, cov2_trans, cov3_trans);
|
||||
auto cov3 = FullCovarianceFromSigmas<Pose3>((Vector6{} << 0., 0., s2(2), s2(0), s2(1), 0.).finished());
|
||||
auto transformed3 = Pose3::TransformCovariance{{Rot3::RzRyRx(0., 0., p2.theta()), {p2.x(), p2.y(), 0.}}}(cov3);
|
||||
match_cov3_to_cov2(3, 4, 2, transformed2, transformed3);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
@ -933,54 +931,49 @@ TEST(Pose3, TransformCovariance6) {
|
|||
|
||||
// rotate 90 around z axis and then 90 around y axis
|
||||
{
|
||||
auto cov = GenerateFullCovariance<Pose3>({{0.1, 0.2, 0.3, 0.5, 0.7, 1.1}});
|
||||
auto cov_trans = RotateTranslate<Pose3>({{0., 90., 90.}}, {{}}, cov);
|
||||
auto cov = FullCovarianceFromSigmas<Pose3>((Vector6{} << 0.1, 0.2, 0.3, 0.5, 0.7, 1.1).finished());
|
||||
auto transformed = Pose3::TransformCovariance{{Rot3::RzRyRx(0., 90 * degree, 90 * degree), {0., 0., 0.}}}(cov);
|
||||
// x from y, y from z, z from x
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(0, 0), cov(1, 1), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(1, 1), cov(2, 2), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(2, 2), cov(0, 0), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(3, 3), cov(4, 4), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(4, 4), cov(5, 5), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(5, 5), cov(3, 3), 1e-9);
|
||||
|
||||
EXPECT(assert_equal(
|
||||
(Vector6{} << cov(1, 1), cov(2, 2), cov(0, 0), cov(4, 4), cov(5, 5), cov(3, 3)).finished(),
|
||||
Vector6{transformed.diagonal()}));
|
||||
// Both the x and z axes are pointing in the negative direction.
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(1, 0), -cov(2, 1), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(2, 0), cov(0, 1), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(3, 0), cov(4, 1), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(4, 0), -cov(5, 1), 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(5, 0), cov(3, 1), 1e-9);
|
||||
EXPECT(assert_equal(
|
||||
(Vector5{} << -cov(2, 1), cov(0, 1), cov(4, 1), -cov(5, 1), cov(3, 1)).finished(),
|
||||
(Vector5{} << transformed(1, 0), transformed(2, 0), transformed(3, 0),
|
||||
transformed(4, 0), transformed(5, 0)).finished()));
|
||||
}
|
||||
|
||||
// translate along the x axis with uncertainty in roty and rotz
|
||||
{
|
||||
auto cov = GenerateTwoVariableCovariance<Pose3>(1, 2, 0.7, 0.3);
|
||||
auto cov_trans = RotateTranslate<Pose3>({{}}, {{20., 0., 0.}}, cov);
|
||||
// The variance in roty and rotz causes off-diagonal covariances
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(5, 1), 0.7 * 0.7 * 20., 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(5, 5), 0.7 * 0.7 * 20. * 20., 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(4, 2), -0.3 * 0.3 * 20., 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(4, 4), 0.3 * 0.3 * 20. * 20., 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(4, 1), -0.3 * 0.7 * 20., 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(5, 2), 0.3 * 0.7 * 20., 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(5, 4), -0.3 * 0.7 * 20. * 20., 1e-9);
|
||||
auto cov = TwoVariableCovarianceFromSigmas<Pose3>(1, 2, 0.7, 0.3);
|
||||
auto transformed = Pose3::TransformCovariance{{Rot3::RzRyRx(0., 0., 0.), {20., 0., 0.}}}(cov);
|
||||
// The uncertainty in roty and rotz causes off-diagonal covariances
|
||||
EXPECT(assert_equal(0.7 * 0.7 * 20., transformed(5, 1)));
|
||||
EXPECT(assert_equal(0.7 * 0.7 * 20. * 20., transformed(5, 5)));
|
||||
EXPECT(assert_equal(-0.3 * 0.3 * 20., transformed(4, 2)));
|
||||
EXPECT(assert_equal(0.3 * 0.3 * 20. * 20., transformed(4, 4)));
|
||||
EXPECT(assert_equal(-0.3 * 0.7 * 20., transformed(4, 1)));
|
||||
EXPECT(assert_equal(0.3 * 0.7 * 20., transformed(5, 2)));
|
||||
EXPECT(assert_equal(-0.3 * 0.7 * 20. * 20., transformed(5, 4)));
|
||||
}
|
||||
|
||||
// rotate around x axis and translate along the x axis with uncertainty in rotx
|
||||
{
|
||||
auto cov = GenerateOneVariableCovariance<Pose3>(0, 0.1);
|
||||
auto cov_trans = RotateTranslate<Pose3>({{90., 0., 0.}}, {{20., 0., 0.}}, cov);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(1, 0), 0., 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(2, 0), 0., 1e-9);
|
||||
auto cov = SingleVariableCovarianceFromSigma<Pose3>(0, 0.1);
|
||||
auto transformed = Pose3::TransformCovariance{{Rot3::RzRyRx(90 * degree, 0., 0.), {20., 0., 0.}}}(cov);
|
||||
// No change
|
||||
EXPECT(assert_equal(cov, transformed));
|
||||
}
|
||||
|
||||
// rotate around x axis and translate along the x axis with uncertainty in roty
|
||||
{
|
||||
auto cov = GenerateOneVariableCovariance<Pose3>(1, 0.1);
|
||||
auto cov_trans = RotateTranslate<Pose3>({{90., 0., 0.}}, {{20., 0., 0.}}, cov);
|
||||
// interchange the y and z axes.
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(2, 2), 0.1 * 0.1, 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(4, 2), -0.1 * 0.1 * 20., 1e-9);
|
||||
EXPECT_DOUBLES_EQUAL(cov_trans(4, 4), 0.1 * 0.1 * 20. * 20., 1e-9);
|
||||
auto cov = SingleVariableCovarianceFromSigma<Pose3>(1, 0.1);
|
||||
auto transformed = Pose3::TransformCovariance{{Rot3::RzRyRx(90 * degree, 0., 0.), {20., 0., 0.}}}(cov);
|
||||
// Uncertainty is spread to other dimensions.
|
||||
EXPECT(assert_equal(
|
||||
(Vector6{} << 0., 0., 0.1 * 0.1, 0., 0.1 * 0.1 * 20. * 20., 0.).finished(),
|
||||
Vector6{transformed.diagonal()}));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -25,30 +25,30 @@ namespace test_pose_adjoint_map
|
|||
{
|
||||
const double degree = M_PI / 180;
|
||||
|
||||
// Create a covariance matrix for type T. Use sigma_values^2 on the diagonal
|
||||
// and fill in non-diagonal entries with correlation coefficient of 1. Note:
|
||||
// a covariance matrix for T has the same dimensions as a Jacobian for T.
|
||||
// Return a covariance matrix for type T with non-zero values for every element.
|
||||
// Use sigma_values^2 on the diagonal and fill in non-diagonal entries with
|
||||
// correlation coefficient of 1. Note: a covariance matrix for T has the same
|
||||
// dimensions as a Jacobian for T, the returned matrix is not a Jacobian.
|
||||
template<class T>
|
||||
typename T::Jacobian GenerateFullCovariance(
|
||||
std::array<double, T::dimension> sigma_values)
|
||||
typename T::Jacobian FullCovarianceFromSigmas(
|
||||
const typename T::TangentVector &sigmas)
|
||||
{
|
||||
typename T::TangentVector sigmas(&sigma_values.front());
|
||||
return typename T::Jacobian{sigmas * sigmas.transpose()};
|
||||
return sigmas * sigmas.transpose();
|
||||
}
|
||||
|
||||
// Create a covariance matrix with one non-zero element on the diagonal.
|
||||
// Return a covariance matrix with one non-zero element on the diagonal.
|
||||
template<class T>
|
||||
typename T::Jacobian GenerateOneVariableCovariance(int idx, double sigma)
|
||||
typename T::Jacobian SingleVariableCovarianceFromSigma(int idx, double sigma)
|
||||
{
|
||||
typename T::Jacobian cov = T::Jacobian::Zero();
|
||||
cov(idx, idx) = sigma * sigma;
|
||||
return cov;
|
||||
}
|
||||
|
||||
// Create a covariance matrix with two non-zero elements on the diagonal with
|
||||
// a correlation of 1.0
|
||||
// Return a covariance matrix with two non-zero elements on the diagonal and
|
||||
// a correlation of 1.0 between the two variables.
|
||||
template<class T>
|
||||
typename T::Jacobian GenerateTwoVariableCovariance(int idx0, int idx1, double sigma0, double sigma1)
|
||||
typename T::Jacobian TwoVariableCovarianceFromSigmas(int idx0, int idx1, double sigma0, double sigma1)
|
||||
{
|
||||
typename T::Jacobian cov = T::Jacobian::Zero();
|
||||
cov(idx0, idx0) = sigma0 * sigma0;
|
||||
|
|
@ -56,32 +56,4 @@ namespace test_pose_adjoint_map
|
|||
cov(idx0, idx1) = cov(idx1, idx0) = sigma0 * sigma1;
|
||||
return cov;
|
||||
}
|
||||
|
||||
// Overloaded function to create a Rot2 from one angle.
|
||||
Rot2 RotFromArray(const std::array<double, Rot2::dimension> &r)
|
||||
{
|
||||
return Rot2{r[0] * degree};
|
||||
}
|
||||
|
||||
// Overloaded function to create a Rot3 from three angles.
|
||||
Rot3 RotFromArray(const std::array<double, Rot3::dimension> &r)
|
||||
{
|
||||
return Rot3::RzRyRx(r[0] * degree, r[1] * degree, r[2] * degree);
|
||||
}
|
||||
|
||||
// Transform a covariance matrix with a rotation and a translation
|
||||
template<class Pose>
|
||||
typename Pose::Jacobian RotateTranslate(
|
||||
std::array<double, Pose::Rotation::dimension> r,
|
||||
std::array<double, Pose::Translation::dimension> t,
|
||||
const typename Pose::Jacobian &cov)
|
||||
{
|
||||
// Construct a pose object
|
||||
typename Pose::Rotation rot{RotFromArray(r)};
|
||||
Pose wTb{rot, typename Pose::Translation{&t.front()}};
|
||||
|
||||
// transform the covariance with the AdjointMap
|
||||
auto adjointMap = wTb.AdjointMap();
|
||||
return adjointMap * cov * adjointMap.transpose();
|
||||
}
|
||||
}
|
||||
Loading…
Reference in New Issue