completed lago example
parent
29b1c92ab8
commit
11db29b1d8
|
|
@ -202,13 +202,13 @@ GaussianFactorGraph buildOrientationGraph(const vector<size_t>& spanningTree, co
|
||||||
}
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
VectorValues initializeLago(const NonlinearFactorGraph& graph) {
|
// returns the orientations of the Pose2 in the connected sub-graph defined by BetweenFactor<Pose2>
|
||||||
|
VectorValues initializeLago(const NonlinearFactorGraph& graph, vector<Key>& keysInBinary) {
|
||||||
// Find a minimum spanning tree
|
// Find a minimum spanning tree
|
||||||
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
|
||||||
BetweenFactor<Pose2> >(graph);
|
BetweenFactor<Pose2> >(graph);
|
||||||
|
|
||||||
// Create a linear factor graph (LFG) of scalars
|
// Create a linear factor graph (LFG) of scalars
|
||||||
vector<Key> keysInBinary;
|
|
||||||
map<Key, double> deltaThetaMap;
|
map<Key, double> deltaThetaMap;
|
||||||
vector<size_t> spanningTree; // ids of between factors forming the spanning tree T
|
vector<size_t> spanningTree; // ids of between factors forming the spanning tree T
|
||||||
vector<size_t> chords; // ids of between factors corresponding to chords wrt T
|
vector<size_t> chords; // ids of between factors corresponding to chords wrt T
|
||||||
|
|
@ -226,6 +226,34 @@ VectorValues initializeLago(const NonlinearFactorGraph& graph) {
|
||||||
return estimateLago;
|
return estimateLago;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
// returns the orientations of the Pose2 in the connected sub-graph defined by BetweenFactor<Pose2>
|
||||||
|
VectorValues initializeLago(const NonlinearFactorGraph& graph) {
|
||||||
|
|
||||||
|
vector<Key> keysInBinary;
|
||||||
|
return initializeLago(graph, keysInBinary);
|
||||||
|
}
|
||||||
|
|
||||||
|
/* ************************************************************************* */
|
||||||
|
// returns the orientations of the Pose2 in the connected sub-graph defined by BetweenFactor<Pose2>
|
||||||
|
Values initializeLago(const NonlinearFactorGraph& graph, const Values& initialGuess) {
|
||||||
|
Values initialGuessLago;
|
||||||
|
|
||||||
|
// get the orientation estimates from LAGO
|
||||||
|
vector<Key> keysInBinary;
|
||||||
|
VectorValues orientations = initializeLago(graph, keysInBinary);
|
||||||
|
|
||||||
|
// plug the orientations in the initialGuess
|
||||||
|
for(size_t i=0; i<keysInBinary.size(); i++){
|
||||||
|
Key key = keysInBinary[i];
|
||||||
|
Pose2 pose = initialGuess.at<Pose2>(key);
|
||||||
|
Vector orientation = orientations.at(key);
|
||||||
|
Pose2 poseLago = Pose2(pose.x(),pose.y(),orientation(0));
|
||||||
|
initialGuessLago.insert(key, poseLago);
|
||||||
|
}
|
||||||
|
return initialGuessLago;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
namespace simple {
|
namespace simple {
|
||||||
// We consider a small graph:
|
// We consider a small graph:
|
||||||
|
|
@ -332,7 +360,7 @@ TEST( Lago, regularizedMeasurements ) {
|
||||||
}
|
}
|
||||||
|
|
||||||
/* *************************************************************************** */
|
/* *************************************************************************** */
|
||||||
TEST( Lago, smallGraph_GTmeasurements ) {
|
TEST( Lago, smallGraphVectorValues ) {
|
||||||
|
|
||||||
VectorValues initialGuessLago = initializeLago(simple::graph());
|
VectorValues initialGuessLago = initializeLago(simple::graph());
|
||||||
|
|
||||||
|
|
@ -343,6 +371,29 @@ TEST( Lago, smallGraph_GTmeasurements ) {
|
||||||
EXPECT(assert_equal((Vector(1) << 1.5 * PI - 2*PI), initialGuessLago.at(x3), 1e-6));
|
EXPECT(assert_equal((Vector(1) << 1.5 * PI - 2*PI), initialGuessLago.at(x3), 1e-6));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* *************************************************************************** */
|
||||||
|
TEST( Lago, smallGraphValues ) {
|
||||||
|
|
||||||
|
// we set the orientations in the initial guess to zero
|
||||||
|
Values initialGuess;
|
||||||
|
initialGuess.insert(x0,Pose2(simple::pose0.x(),simple::pose0.y(),0.0));
|
||||||
|
initialGuess.insert(x1,Pose2(simple::pose1.x(),simple::pose1.y(),0.0));
|
||||||
|
initialGuess.insert(x2,Pose2(simple::pose2.x(),simple::pose2.y(),0.0));
|
||||||
|
initialGuess.insert(x3,Pose2(simple::pose3.x(),simple::pose3.y(),0.0));
|
||||||
|
|
||||||
|
// lago does not touch the Cartesian part and only fixed the orientations
|
||||||
|
Values actual = initializeLago(simple::graph(), initialGuess);
|
||||||
|
|
||||||
|
// we are in a noiseless case
|
||||||
|
Values expected;
|
||||||
|
expected.insert(x0,simple::pose0);
|
||||||
|
expected.insert(x1,simple::pose1);
|
||||||
|
expected.insert(x2,simple::pose2);
|
||||||
|
expected.insert(x3,simple::pose3);
|
||||||
|
|
||||||
|
EXPECT(assert_equal(expected, actual, 1e-6));
|
||||||
|
}
|
||||||
|
|
||||||
/* ************************************************************************* */
|
/* ************************************************************************* */
|
||||||
int main() {
|
int main() {
|
||||||
TestResult tr;
|
TestResult tr;
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue