completed lago example

release/4.3a0
Luca 2014-05-16 15:27:05 -04:00
parent 29b1c92ab8
commit 11db29b1d8
1 changed files with 103 additions and 52 deletions

View File

@ -78,64 +78,64 @@ static const double PI = boost::math::constants::pi<double>();
double computeThetaToRoot(const Key nodeKey, PredecessorMap<Key>& tree,
map<Key, double>& deltaThetaMap, map<Key, double>& thetaFromRootMap) {
double nodeTheta = 0;
Key key_child = nodeKey; // the node
Key key_parent = 0; // the initialization does not matter
while(1){
// We check if we reached the root
if(tree[key_child]==key_child) // if we reached the root
break;
// we sum the delta theta corresponding to the edge parent->child
nodeTheta += deltaThetaMap[key_child];
// we get the parent
key_parent = tree[key_child]; // the parent
// we check if we connected to some part of the tree we know
if(thetaFromRootMap.find(key_parent)!=thetaFromRootMap.end()){
nodeTheta += thetaFromRootMap[key_parent];
break;
}
key_child = key_parent; // we move upwards in the tree
double nodeTheta = 0;
Key key_child = nodeKey; // the node
Key key_parent = 0; // the initialization does not matter
while(1){
// We check if we reached the root
if(tree[key_child]==key_child) // if we reached the root
break;
// we sum the delta theta corresponding to the edge parent->child
nodeTheta += deltaThetaMap[key_child];
// we get the parent
key_parent = tree[key_child]; // the parent
// we check if we connected to some part of the tree we know
if(thetaFromRootMap.find(key_parent)!=thetaFromRootMap.end()){
nodeTheta += thetaFromRootMap[key_parent];
break;
}
return nodeTheta;
key_child = key_parent; // we move upwards in the tree
}
return nodeTheta;
}
void getSymbolicSubgraph(vector<Key>& keysInBinary, vector<size_t>& spanningTree,
vector<size_t>& chords, map<Key, double>& deltaThetaMap, PredecessorMap<Key>& tree, const NonlinearFactorGraph& g){
// Get keys for which you want the orientation
size_t id=0;
// Loop over the factors
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, g){
if (factor->keys().size() == 2){
Key key1 = factor->keys()[0];
Key key2 = factor->keys()[1];
if(std::find(keysInBinary.begin(), keysInBinary.end(), key1)==keysInBinary.end()) // did not find key1, we add it
keysInBinary.push_back(key1);
if(std::find(keysInBinary.begin(), keysInBinary.end(), key2)==keysInBinary.end()) // did not find key2, we add it
keysInBinary.push_back(key2);
// Loop over the factors
BOOST_FOREACH(const boost::shared_ptr<NonlinearFactor>& factor, g){
if (factor->keys().size() == 2){
Key key1 = factor->keys()[0];
Key key2 = factor->keys()[1];
if(std::find(keysInBinary.begin(), keysInBinary.end(), key1)==keysInBinary.end()) // did not find key1, we add it
keysInBinary.push_back(key1);
if(std::find(keysInBinary.begin(), keysInBinary.end(), key2)==keysInBinary.end()) // did not find key2, we add it
keysInBinary.push_back(key2);
// recast to a between
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
if (!pose2Between) continue;
// recast to a between
boost::shared_ptr< BetweenFactor<Pose2> > pose2Between = boost::dynamic_pointer_cast< BetweenFactor<Pose2> >(factor);
if (!pose2Between) continue;
// get the orientation - measured().theta();
double deltaTheta = pose2Between->measured().theta();
// get the orientation - measured().theta();
double deltaTheta = pose2Between->measured().theta();
bool inTree=false;
if(tree[key1]==key2){
deltaThetaMap.insert(std::pair<Key, double>(key1, -deltaTheta));
inTree = true;
}
if(tree[key2]==key1){
deltaThetaMap.insert(std::pair<Key, double>(key2, deltaTheta));
inTree = true;
}
if(inTree == true)
spanningTree.push_back(id);
else // it's a chord!
chords.push_back(id);
bool inTree=false;
if(tree[key1]==key2){
deltaThetaMap.insert(std::pair<Key, double>(key1, -deltaTheta));
inTree = true;
}
id++;
if(tree[key2]==key1){
deltaThetaMap.insert(std::pair<Key, double>(key2, deltaTheta));
inTree = true;
}
if(inTree == true)
spanningTree.push_back(id);
else // it's a chord!
chords.push_back(id);
}
id++;
}
}
/*
@ -202,13 +202,13 @@ GaussianFactorGraph buildOrientationGraph(const vector<size_t>& spanningTree, co
}
/* ************************************************************************* */
VectorValues initializeLago(const NonlinearFactorGraph& graph) {
// returns the orientations of the Pose2 in the connected sub-graph defined by BetweenFactor<Pose2>
VectorValues initializeLago(const NonlinearFactorGraph& graph, vector<Key>& keysInBinary) {
// Find a minimum spanning tree
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
BetweenFactor<Pose2> >(graph);
// Create a linear factor graph (LFG) of scalars
vector<Key> keysInBinary;
map<Key, double> deltaThetaMap;
vector<size_t> spanningTree; // ids of between factors forming the spanning tree T
vector<size_t> chords; // ids of between factors corresponding to chords wrt T
@ -226,6 +226,34 @@ VectorValues initializeLago(const NonlinearFactorGraph& graph) {
return estimateLago;
}
/* ************************************************************************* */
// returns the orientations of the Pose2 in the connected sub-graph defined by BetweenFactor<Pose2>
VectorValues initializeLago(const NonlinearFactorGraph& graph) {
vector<Key> keysInBinary;
return initializeLago(graph, keysInBinary);
}
/* ************************************************************************* */
// returns the orientations of the Pose2 in the connected sub-graph defined by BetweenFactor<Pose2>
Values initializeLago(const NonlinearFactorGraph& graph, const Values& initialGuess) {
Values initialGuessLago;
// get the orientation estimates from LAGO
vector<Key> keysInBinary;
VectorValues orientations = initializeLago(graph, keysInBinary);
// plug the orientations in the initialGuess
for(size_t i=0; i<keysInBinary.size(); i++){
Key key = keysInBinary[i];
Pose2 pose = initialGuess.at<Pose2>(key);
Vector orientation = orientations.at(key);
Pose2 poseLago = Pose2(pose.x(),pose.y(),orientation(0));
initialGuessLago.insert(key, poseLago);
}
return initialGuessLago;
}
namespace simple {
// We consider a small graph:
@ -259,7 +287,7 @@ NonlinearFactorGraph graph() {
TEST( Lago, checkSTandChords ) {
NonlinearFactorGraph g = simple::graph();
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
BetweenFactor<Pose2> >(g);
BetweenFactor<Pose2> >(g);
vector<Key> keysInBinary;
map<Key, double> deltaThetaMap;
@ -277,7 +305,7 @@ TEST( Lago, checkSTandChords ) {
TEST( Lago, orientationsOverSpanningTree ) {
NonlinearFactorGraph g = simple::graph();
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
BetweenFactor<Pose2> >(g);
BetweenFactor<Pose2> >(g);
// check the tree structure
EXPECT_LONGS_EQUAL(tree[x0], x0);
@ -309,7 +337,7 @@ TEST( Lago, orientationsOverSpanningTree ) {
TEST( Lago, regularizedMeasurements ) {
NonlinearFactorGraph g = simple::graph();
PredecessorMap<Key> tree = findMinimumSpanningTree<NonlinearFactorGraph, Key,
BetweenFactor<Pose2> >(g);
BetweenFactor<Pose2> >(g);
vector<Key> keysInBinary;
map<Key, double> deltaThetaMap;
@ -332,7 +360,7 @@ TEST( Lago, regularizedMeasurements ) {
}
/* *************************************************************************** */
TEST( Lago, smallGraph_GTmeasurements ) {
TEST( Lago, smallGraphVectorValues ) {
VectorValues initialGuessLago = initializeLago(simple::graph());
@ -343,6 +371,29 @@ TEST( Lago, smallGraph_GTmeasurements ) {
EXPECT(assert_equal((Vector(1) << 1.5 * PI - 2*PI), initialGuessLago.at(x3), 1e-6));
}
/* *************************************************************************** */
TEST( Lago, smallGraphValues ) {
// we set the orientations in the initial guess to zero
Values initialGuess;
initialGuess.insert(x0,Pose2(simple::pose0.x(),simple::pose0.y(),0.0));
initialGuess.insert(x1,Pose2(simple::pose1.x(),simple::pose1.y(),0.0));
initialGuess.insert(x2,Pose2(simple::pose2.x(),simple::pose2.y(),0.0));
initialGuess.insert(x3,Pose2(simple::pose3.x(),simple::pose3.y(),0.0));
// lago does not touch the Cartesian part and only fixed the orientations
Values actual = initializeLago(simple::graph(), initialGuess);
// we are in a noiseless case
Values expected;
expected.insert(x0,simple::pose0);
expected.insert(x1,simple::pose1);
expected.insert(x2,simple::pose2);
expected.insert(x3,simple::pose3);
EXPECT(assert_equal(expected, actual, 1e-6));
}
/* ************************************************************************* */
int main() {
TestResult tr;