fixing tests
parent
4c10be9808
commit
117f0d1f45
|
|
@ -64,7 +64,7 @@ class SmartProjectionRigFactor : public SmartProjectionFactor<CAMERA> {
|
|||
typename Base::Cameras cameraRig_;
|
||||
|
||||
/// vector of camera Ids (one for each observation), identifying which camera took the measurement
|
||||
KeyVector cameraIds_;
|
||||
FastVector<size_t> cameraIds_;
|
||||
|
||||
public:
|
||||
typedef CAMERA Camera;
|
||||
|
|
@ -145,7 +145,7 @@ class SmartProjectionRigFactor : public SmartProjectionFactor<CAMERA> {
|
|||
}
|
||||
|
||||
/// return the calibration object
|
||||
inline KeyVector cameraIds() const {
|
||||
inline FastVector<size_t> cameraIds() const {
|
||||
return cameraIds_;
|
||||
}
|
||||
|
||||
|
|
@ -184,11 +184,12 @@ class SmartProjectionRigFactor : public SmartProjectionFactor<CAMERA> {
|
|||
typename Base::Cameras cameras(const Values& values) const override {
|
||||
typename Base::Cameras cameras;
|
||||
for (size_t i = 0; i < nonUniqueKeys_.size(); i++) {
|
||||
const Pose3& body_P_cam_i = cameraRig_[i].pose();
|
||||
const Key cameraId = cameraIds_[i];
|
||||
const Pose3& body_P_cam_i = cameraRig_[cameraId].pose();
|
||||
const Pose3 world_P_sensor_i = values.at<Pose3>(nonUniqueKeys_[i])
|
||||
* body_P_cam_i;
|
||||
cameras.emplace_back(world_P_sensor_i,
|
||||
make_shared<typename CAMERA::CalibrationType>(cameraRig_[i].calibration()));
|
||||
make_shared<typename CAMERA::CalibrationType>(cameraRig_[cameraId].calibration()));
|
||||
}
|
||||
return cameras;
|
||||
}
|
||||
|
|
@ -220,7 +221,8 @@ class SmartProjectionRigFactor : public SmartProjectionFactor<CAMERA> {
|
|||
} else { // valid result: compute jacobians
|
||||
b = -cameras.reprojectionError(*this->result_, this->measured_, Fs, E);
|
||||
for (size_t i = 0; i < Fs.size(); i++) {
|
||||
const Pose3 body_P_sensor = cameraRig_[i].pose();
|
||||
const Key cameraId = cameraIds_[i];
|
||||
const Pose3 body_P_sensor = cameraRig_[cameraId].pose();
|
||||
const Pose3 sensor_P_body = body_P_sensor.inverse();
|
||||
const Pose3 world_P_body = cameras[i].pose() * sensor_P_body;
|
||||
Eigen::Matrix<double, DimPose, DimPose> H;
|
||||
|
|
@ -242,7 +244,7 @@ class SmartProjectionRigFactor : public SmartProjectionFactor<CAMERA> {
|
|||
Cameras cameras = this->cameras(values);
|
||||
|
||||
// Create structures for Hessian Factors
|
||||
KeyVector js;
|
||||
FastVector<size_t> js;
|
||||
FastVector < Matrix > Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
|
||||
FastVector < Vector > gs(nrUniqueKeys);
|
||||
|
||||
|
|
|
|||
|
|
@ -84,6 +84,7 @@ Camera cam3(pose_above, sharedK);
|
|||
// default Cal3_S2 poses
|
||||
namespace vanillaPose2 {
|
||||
typedef PinholePose<Cal3_S2> Camera;
|
||||
typedef CameraSet<Camera> Cameras;
|
||||
typedef SmartProjectionPoseFactor<Cal3_S2> SmartFactor;
|
||||
typedef SmartProjectionRigFactor<Camera> SmartFactorP;
|
||||
static Cal3_S2::shared_ptr sharedK2(new Cal3_S2(1500, 1200, 0, 640, 480));
|
||||
|
|
|
|||
|
|
@ -45,6 +45,10 @@ static Symbol x1('X', 1);
|
|||
static Symbol x2('X', 2);
|
||||
static Symbol x3('X', 3);
|
||||
|
||||
Key cameraId1 = 0; // first camera
|
||||
Key cameraId2 = 1;
|
||||
Key cameraId3 = 2;
|
||||
|
||||
static Point2 measurement1(323.0, 240.0);
|
||||
|
||||
LevenbergMarquardtParams lmParams;
|
||||
|
|
@ -59,294 +63,294 @@ TEST( SmartProjectionRigFactor, Constructor) {
|
|||
SmartFactorP::shared_ptr factor1(new SmartFactorP(model, cameraRig));
|
||||
}
|
||||
|
||||
///* ************************************************************************* */
|
||||
//TEST( SmartProjectionRigFactor, Constructor2) {
|
||||
// using namespace vanillaPose;
|
||||
// SmartProjectionParams params;
|
||||
// params.setRankTolerance(rankTol);
|
||||
// SmartFactorP factor1(model, params);
|
||||
//}
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//TEST( SmartProjectionRigFactor, Constructor3) {
|
||||
// using namespace vanillaPose;
|
||||
// SmartFactorP::shared_ptr factor1(new SmartFactorP(model));
|
||||
// factor1->add(measurement1, x1, sharedK);
|
||||
//}
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//TEST( SmartProjectionRigFactor, Constructor4) {
|
||||
// using namespace vanillaPose;
|
||||
// SmartProjectionParams params;
|
||||
// params.setRankTolerance(rankTol);
|
||||
// SmartFactorP factor1(model, params);
|
||||
// factor1.add(measurement1, x1, sharedK);
|
||||
//}
|
||||
//
|
||||
///* ************************************************************************* */
|
||||
//TEST( SmartProjectionRigFactor, Equals ) {
|
||||
// using namespace vanillaPose;
|
||||
// SmartFactorP::shared_ptr factor1(new SmartFactorP(model));
|
||||
// factor1->add(measurement1, x1, sharedK);
|
||||
//
|
||||
// SmartFactorP::shared_ptr factor2(new SmartFactorP(model));
|
||||
// factor2->add(measurement1, x1, sharedK);
|
||||
//
|
||||
// CHECK(assert_equal(*factor1, *factor2));
|
||||
//}
|
||||
//
|
||||
///* *************************************************************************/
|
||||
//TEST( SmartProjectionRigFactor, noiseless ) {
|
||||
//
|
||||
// using namespace vanillaPose;
|
||||
//
|
||||
// // Project two landmarks into two cameras
|
||||
// Point2 level_uv = level_camera.project(landmark1);
|
||||
// Point2 level_uv_right = level_camera_right.project(landmark1);
|
||||
//
|
||||
// SmartFactorP factor(model);
|
||||
// factor.add(level_uv, x1, sharedK);
|
||||
// factor.add(level_uv_right, x2, sharedK);
|
||||
//
|
||||
// Values values; // it's a pose factor, hence these are poses
|
||||
// values.insert(x1, cam1.pose());
|
||||
// values.insert(x2, cam2.pose());
|
||||
//
|
||||
// double actualError = factor.error(values);
|
||||
// double expectedError = 0.0;
|
||||
// EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
|
||||
//
|
||||
// SmartFactorP::Cameras cameras = factor.cameras(values);
|
||||
// double actualError2 = factor.totalReprojectionError(cameras);
|
||||
// EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7);
|
||||
//
|
||||
// // Calculate expected derivative for point (easiest to check)
|
||||
// std::function<Vector(Point3)> f = //
|
||||
// std::bind(&SmartFactorP::whitenedError<Point3>, factor, cameras,
|
||||
// std::placeholders::_1);
|
||||
//
|
||||
// // Calculate using computeEP
|
||||
// Matrix actualE;
|
||||
// factor.triangulateAndComputeE(actualE, values);
|
||||
//
|
||||
// // get point
|
||||
// boost::optional<Point3> point = factor.point();
|
||||
// CHECK(point);
|
||||
//
|
||||
// // calculate numerical derivative with triangulated point
|
||||
// Matrix expectedE = sigma * numericalDerivative11<Vector, Point3>(f, *point);
|
||||
// EXPECT(assert_equal(expectedE, actualE, 1e-7));
|
||||
//
|
||||
// // Calculate using reprojectionError
|
||||
// SmartFactorP::Cameras::FBlocks F;
|
||||
// Matrix E;
|
||||
// Vector actualErrors = factor.unwhitenedError(cameras, *point, F, E);
|
||||
// EXPECT(assert_equal(expectedE, E, 1e-7));
|
||||
//
|
||||
// EXPECT(assert_equal(Z_4x1, actualErrors, 1e-7));
|
||||
//
|
||||
// // Calculate using computeJacobians
|
||||
// Vector b;
|
||||
// SmartFactorP::FBlocks Fs;
|
||||
// factor.computeJacobians(Fs, E, b, cameras, *point);
|
||||
// double actualError3 = b.squaredNorm();
|
||||
// EXPECT(assert_equal(expectedE, E, 1e-7));
|
||||
// EXPECT_DOUBLES_EQUAL(expectedError, actualError3, 1e-6);
|
||||
//}
|
||||
//
|
||||
///* *************************************************************************/
|
||||
//TEST( SmartProjectionRigFactor, noisy ) {
|
||||
//
|
||||
// using namespace vanillaPose;
|
||||
//
|
||||
// // Project two landmarks into two cameras
|
||||
// Point2 pixelError(0.2, 0.2);
|
||||
// Point2 level_uv = level_camera.project(landmark1) + pixelError;
|
||||
// Point2 level_uv_right = level_camera_right.project(landmark1);
|
||||
//
|
||||
// Values values;
|
||||
// values.insert(x1, cam1.pose());
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 10, 0., -M_PI / 10),
|
||||
// Point3(0.5, 0.1, 0.3));
|
||||
// values.insert(x2, pose_right.compose(noise_pose));
|
||||
//
|
||||
// SmartFactorP::shared_ptr factor(new SmartFactorP(model));
|
||||
// factor->add(level_uv, x1, sharedK);
|
||||
// factor->add(level_uv_right, x2, sharedK);
|
||||
//
|
||||
// double actualError1 = factor->error(values);
|
||||
//
|
||||
// SmartFactorP::shared_ptr factor2(new SmartFactorP(model));
|
||||
// Point2Vector measurements;
|
||||
// measurements.push_back(level_uv);
|
||||
// measurements.push_back(level_uv_right);
|
||||
//
|
||||
// std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
|
||||
// sharedKs.push_back(sharedK);
|
||||
// sharedKs.push_back(sharedK);
|
||||
//
|
||||
// KeyVector views { x1, x2 };
|
||||
//
|
||||
// factor2->add(measurements, views, sharedKs);
|
||||
// double actualError2 = factor2->error(values);
|
||||
// DOUBLES_EQUAL(actualError1, actualError2, 1e-7);
|
||||
//}
|
||||
//
|
||||
///* *************************************************************************/
|
||||
//TEST(SmartProjectionRigFactor, smartFactorWithSensorBodyTransform) {
|
||||
// using namespace vanillaPose;
|
||||
//
|
||||
// // create arbitrary body_T_sensor (transforms from sensor to body)
|
||||
// Pose3 body_T_sensor = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2),
|
||||
// Point3(1, 1, 1));
|
||||
//
|
||||
// // These are the poses we want to estimate, from camera measurements
|
||||
// const Pose3 sensor_T_body = body_T_sensor.inverse();
|
||||
// Pose3 wTb1 = cam1.pose() * sensor_T_body;
|
||||
// Pose3 wTb2 = cam2.pose() * sensor_T_body;
|
||||
// Pose3 wTb3 = cam3.pose() * sensor_T_body;
|
||||
//
|
||||
// // three landmarks ~5 meters infront of camera
|
||||
// Point3 landmark1(5, 0.5, 1.2), landmark2(5, -0.5, 1.2), landmark3(5, 0, 3.0);
|
||||
//
|
||||
// Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
||||
//
|
||||
// // Project three landmarks into three cameras
|
||||
// projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
||||
// projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||
// projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||
//
|
||||
// // Create smart factors
|
||||
// KeyVector views { x1, x2, x3 };
|
||||
//
|
||||
// SmartProjectionParams params;
|
||||
// params.setRankTolerance(1.0);
|
||||
// params.setDegeneracyMode(IGNORE_DEGENERACY);
|
||||
// params.setEnableEPI(false);
|
||||
//
|
||||
// std::vector < boost::shared_ptr < Cal3_S2 >> sharedKs;
|
||||
// sharedKs.push_back(sharedK);
|
||||
// sharedKs.push_back(sharedK);
|
||||
// sharedKs.push_back(sharedK);
|
||||
//
|
||||
// std::vector<Pose3> body_T_sensors;
|
||||
// body_T_sensors.push_back(body_T_sensor);
|
||||
// body_T_sensors.push_back(body_T_sensor);
|
||||
// body_T_sensors.push_back(body_T_sensor);
|
||||
//
|
||||
// SmartFactorP smartFactor1(model, params);
|
||||
// smartFactor1.add(measurements_cam1, views, sharedKs, body_T_sensors);
|
||||
//
|
||||
// SmartFactorP smartFactor2(model, params);
|
||||
// smartFactor2.add(measurements_cam2, views, sharedKs, body_T_sensors);
|
||||
//
|
||||
// SmartFactorP smartFactor3(model, params);
|
||||
// smartFactor3.add(measurements_cam3, views, sharedKs, body_T_sensors);
|
||||
// ;
|
||||
//
|
||||
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
//
|
||||
// // Put all factors in factor graph, adding priors
|
||||
// NonlinearFactorGraph graph;
|
||||
// graph.push_back(smartFactor1);
|
||||
// graph.push_back(smartFactor2);
|
||||
// graph.push_back(smartFactor3);
|
||||
// graph.addPrior(x1, wTb1, noisePrior);
|
||||
// graph.addPrior(x2, wTb2, noisePrior);
|
||||
//
|
||||
// // Check errors at ground truth poses
|
||||
// Values gtValues;
|
||||
// gtValues.insert(x1, wTb1);
|
||||
// gtValues.insert(x2, wTb2);
|
||||
// gtValues.insert(x3, wTb3);
|
||||
// double actualError = graph.error(gtValues);
|
||||
// double expectedError = 0.0;
|
||||
// DOUBLES_EQUAL(expectedError, actualError, 1e-7)
|
||||
//
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
// Point3(0.1, 0.1, 0.1));
|
||||
// Values values;
|
||||
// values.insert(x1, wTb1);
|
||||
// values.insert(x2, wTb2);
|
||||
// // initialize third pose with some noise, we expect it to move back to
|
||||
// // original pose3
|
||||
// values.insert(x3, wTb3 * noise_pose);
|
||||
//
|
||||
// LevenbergMarquardtParams lmParams;
|
||||
// Values result;
|
||||
// LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||
// result = optimizer.optimize();
|
||||
//// graph.print("graph\n");
|
||||
// EXPECT(assert_equal(wTb3, result.at<Pose3>(x3)));
|
||||
//}
|
||||
//
|
||||
///* *************************************************************************/
|
||||
//TEST( SmartProjectionRigFactor, 3poses_smart_projection_factor ) {
|
||||
//
|
||||
// using namespace vanillaPose2;
|
||||
// Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
||||
//
|
||||
// // Project three landmarks into three cameras
|
||||
// projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
||||
// projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||
// projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||
//
|
||||
// KeyVector views;
|
||||
// views.push_back(x1);
|
||||
// views.push_back(x2);
|
||||
// views.push_back(x3);
|
||||
//
|
||||
// std::vector < boost::shared_ptr < Cal3_S2 >> sharedK2s;
|
||||
// sharedK2s.push_back(sharedK2);
|
||||
// sharedK2s.push_back(sharedK2);
|
||||
// sharedK2s.push_back(sharedK2);
|
||||
//
|
||||
// SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model));
|
||||
// smartFactor1->add(measurements_cam1, views, sharedK2s);
|
||||
//
|
||||
// SmartFactorP::shared_ptr smartFactor2(new SmartFactorP(model));
|
||||
// smartFactor2->add(measurements_cam2, views, sharedK2s);
|
||||
//
|
||||
// SmartFactorP::shared_ptr smartFactor3(new SmartFactorP(model));
|
||||
// smartFactor3->add(measurements_cam3, views, sharedK2s);
|
||||
//
|
||||
// const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
//
|
||||
// NonlinearFactorGraph graph;
|
||||
// graph.push_back(smartFactor1);
|
||||
// graph.push_back(smartFactor2);
|
||||
// graph.push_back(smartFactor3);
|
||||
// graph.addPrior(x1, cam1.pose(), noisePrior);
|
||||
// graph.addPrior(x2, cam2.pose(), noisePrior);
|
||||
//
|
||||
// Values groundTruth;
|
||||
// groundTruth.insert(x1, cam1.pose());
|
||||
// groundTruth.insert(x2, cam2.pose());
|
||||
// groundTruth.insert(x3, cam3.pose());
|
||||
// DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
|
||||
//
|
||||
// // Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
// Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
// Values values;
|
||||
// values.insert(x1, cam1.pose());
|
||||
// values.insert(x2, cam2.pose());
|
||||
// // initialize third pose with some noise, we expect it to move back to original pose_above
|
||||
// values.insert(x3, pose_above * noise_pose);
|
||||
// EXPECT(
|
||||
// assert_equal(
|
||||
// Pose3(
|
||||
// Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
|
||||
// -0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
|
||||
// Point3(0.1, -0.1, 1.9)),
|
||||
// values.at<Pose3>(x3)));
|
||||
//
|
||||
// Values result;
|
||||
// LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||
// result = optimizer.optimize();
|
||||
// EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
|
||||
//}
|
||||
//
|
||||
/* ************************************************************************* */
|
||||
TEST( SmartProjectionRigFactor, Constructor2) {
|
||||
using namespace vanillaPose;
|
||||
Cameras cameraRig;
|
||||
SmartProjectionParams params;
|
||||
params.setRankTolerance(rankTol);
|
||||
SmartFactorP factor1(model, cameraRig, params);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( SmartProjectionRigFactor, Constructor3) {
|
||||
using namespace vanillaPose;
|
||||
Cameras cameraRig;
|
||||
cameraRig.push_back( Camera(Pose3::identity(), sharedK) );
|
||||
SmartFactorP::shared_ptr factor1(new SmartFactorP(model, cameraRig));
|
||||
factor1->add(measurement1, x1, cameraId1);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( SmartProjectionRigFactor, Constructor4) {
|
||||
using namespace vanillaPose;
|
||||
Cameras cameraRig;
|
||||
cameraRig.push_back( Camera(Pose3::identity(), sharedK) );
|
||||
SmartProjectionParams params;
|
||||
params.setRankTolerance(rankTol);
|
||||
SmartFactorP factor1(model, cameraRig, params);
|
||||
factor1.add(measurement1, x1, cameraId1);
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
TEST( SmartProjectionRigFactor, Equals ) {
|
||||
using namespace vanillaPose;
|
||||
Cameras cameraRig; // single camera in the rig
|
||||
cameraRig.push_back( Camera(Pose3::identity(), sharedK) );
|
||||
|
||||
SmartFactorP::shared_ptr factor1(new SmartFactorP(model, cameraRig));
|
||||
factor1->add(measurement1, x1, cameraId1);
|
||||
|
||||
SmartFactorP::shared_ptr factor2(new SmartFactorP(model, cameraRig));
|
||||
factor2->add(measurement1, x1, cameraId1);
|
||||
|
||||
CHECK(assert_equal(*factor1, *factor2));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionRigFactor, noiseless ) {
|
||||
|
||||
using namespace vanillaPose;
|
||||
|
||||
Cameras cameraRig; // single camera in the rig
|
||||
cameraRig.push_back( Camera(Pose3::identity(), sharedK) );
|
||||
|
||||
// Project two landmarks into two cameras
|
||||
Point2 level_uv = level_camera.project(landmark1);
|
||||
Point2 level_uv_right = level_camera_right.project(landmark1);
|
||||
|
||||
SmartFactorP factor(model, cameraRig);
|
||||
factor.add(level_uv, x1, cameraId1); // both taken from the same camera
|
||||
factor.add(level_uv_right, x2, cameraId1);
|
||||
|
||||
Values values; // it's a pose factor, hence these are poses
|
||||
values.insert(x1, cam1.pose());
|
||||
values.insert(x2, cam2.pose());
|
||||
|
||||
double actualError = factor.error(values);
|
||||
double expectedError = 0.0;
|
||||
EXPECT_DOUBLES_EQUAL(expectedError, actualError, 1e-7);
|
||||
|
||||
SmartFactorP::Cameras cameras = factor.cameras(values);
|
||||
double actualError2 = factor.totalReprojectionError(cameras);
|
||||
EXPECT_DOUBLES_EQUAL(expectedError, actualError2, 1e-7);
|
||||
|
||||
// Calculate expected derivative for point (easiest to check)
|
||||
std::function<Vector(Point3)> f = //
|
||||
std::bind(&SmartFactorP::whitenedError<Point3>, factor, cameras,
|
||||
std::placeholders::_1);
|
||||
|
||||
// Calculate using computeEP
|
||||
Matrix actualE;
|
||||
factor.triangulateAndComputeE(actualE, values);
|
||||
|
||||
// get point
|
||||
boost::optional<Point3> point = factor.point();
|
||||
CHECK(point);
|
||||
|
||||
// calculate numerical derivative with triangulated point
|
||||
Matrix expectedE = sigma * numericalDerivative11<Vector, Point3>(f, *point);
|
||||
EXPECT(assert_equal(expectedE, actualE, 1e-7));
|
||||
|
||||
// Calculate using reprojectionError
|
||||
SmartFactorP::Cameras::FBlocks F;
|
||||
Matrix E;
|
||||
Vector actualErrors = factor.unwhitenedError(cameras, *point, F, E);
|
||||
EXPECT(assert_equal(expectedE, E, 1e-7));
|
||||
|
||||
EXPECT(assert_equal(Z_4x1, actualErrors, 1e-7));
|
||||
|
||||
// Calculate using computeJacobians
|
||||
Vector b;
|
||||
SmartFactorP::FBlocks Fs;
|
||||
factor.computeJacobians(Fs, E, b, cameras, *point);
|
||||
double actualError3 = b.squaredNorm();
|
||||
EXPECT(assert_equal(expectedE, E, 1e-7));
|
||||
EXPECT_DOUBLES_EQUAL(expectedError, actualError3, 1e-6);
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionRigFactor, noisy ) {
|
||||
|
||||
using namespace vanillaPose;
|
||||
|
||||
Cameras cameraRig; // single camera in the rig
|
||||
cameraRig.push_back( Camera(Pose3::identity(), sharedK) );
|
||||
|
||||
// Project two landmarks into two cameras
|
||||
Point2 pixelError(0.2, 0.2);
|
||||
Point2 level_uv = level_camera.project(landmark1) + pixelError;
|
||||
Point2 level_uv_right = level_camera_right.project(landmark1);
|
||||
|
||||
Values values;
|
||||
values.insert(x1, cam1.pose());
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 10, 0., -M_PI / 10),
|
||||
Point3(0.5, 0.1, 0.3));
|
||||
values.insert(x2, pose_right.compose(noise_pose));
|
||||
|
||||
SmartFactorP::shared_ptr factor(new SmartFactorP(model,cameraRig));
|
||||
factor->add(level_uv, x1, cameraId1);
|
||||
factor->add(level_uv_right, x2, cameraId1);
|
||||
|
||||
double actualError1 = factor->error(values);
|
||||
|
||||
// create other factor by passing multiple measurements
|
||||
SmartFactorP::shared_ptr factor2(new SmartFactorP(model,cameraRig));
|
||||
|
||||
Point2Vector measurements;
|
||||
measurements.push_back(level_uv);
|
||||
measurements.push_back(level_uv_right);
|
||||
|
||||
KeyVector views { x1, x2 };
|
||||
FastVector<size_t> cameraIds { 0, 0 };
|
||||
|
||||
factor2->add(measurements, views, cameraIds);
|
||||
double actualError2 = factor2->error(values);
|
||||
DOUBLES_EQUAL(actualError1, actualError2, 1e-7);
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST(SmartProjectionRigFactor, smartFactorWithSensorBodyTransform) {
|
||||
using namespace vanillaPose;
|
||||
|
||||
// create arbitrary body_T_sensor (transforms from sensor to body)
|
||||
Pose3 body_T_sensor = Pose3(Rot3::Ypr(-M_PI / 2, 0., -M_PI / 2),
|
||||
Point3(1, 1, 1));
|
||||
Cameras cameraRig; // single camera in the rig
|
||||
cameraRig.push_back( Camera(body_T_sensor, sharedK) );
|
||||
|
||||
// These are the poses we want to estimate, from camera measurements
|
||||
const Pose3 sensor_T_body = body_T_sensor.inverse();
|
||||
Pose3 wTb1 = cam1.pose() * sensor_T_body;
|
||||
Pose3 wTb2 = cam2.pose() * sensor_T_body;
|
||||
Pose3 wTb3 = cam3.pose() * sensor_T_body;
|
||||
|
||||
// three landmarks ~5 meters infront of camera
|
||||
Point3 landmark1(5, 0.5, 1.2), landmark2(5, -0.5, 1.2), landmark3(5, 0, 3.0);
|
||||
|
||||
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
||||
|
||||
// Project three landmarks into three cameras
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||
|
||||
// Create smart factors
|
||||
KeyVector views { x1, x2, x3 };
|
||||
FastVector<size_t> cameraIds { 0, 0, 0 };
|
||||
|
||||
SmartProjectionParams params;
|
||||
params.setRankTolerance(1.0);
|
||||
params.setDegeneracyMode(IGNORE_DEGENERACY);
|
||||
params.setEnableEPI(false);
|
||||
|
||||
SmartFactorP smartFactor1(model, cameraRig, params);
|
||||
smartFactor1.add(measurements_cam1, views, cameraIds);
|
||||
|
||||
SmartFactorP smartFactor2(model, cameraRig, params);
|
||||
smartFactor2.add(measurements_cam2, views, cameraIds);
|
||||
|
||||
SmartFactorP smartFactor3(model, cameraRig, params);
|
||||
smartFactor3.add(measurements_cam3, views, cameraIds);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
||||
// Put all factors in factor graph, adding priors
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor1);
|
||||
graph.push_back(smartFactor2);
|
||||
graph.push_back(smartFactor3);
|
||||
graph.addPrior(x1, wTb1, noisePrior);
|
||||
graph.addPrior(x2, wTb2, noisePrior);
|
||||
|
||||
// Check errors at ground truth poses
|
||||
Values gtValues;
|
||||
gtValues.insert(x1, wTb1);
|
||||
gtValues.insert(x2, wTb2);
|
||||
gtValues.insert(x3, wTb3);
|
||||
double actualError = graph.error(gtValues);
|
||||
double expectedError = 0.0;
|
||||
DOUBLES_EQUAL(expectedError, actualError, 1e-7)
|
||||
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1));
|
||||
Values values;
|
||||
values.insert(x1, wTb1);
|
||||
values.insert(x2, wTb2);
|
||||
// initialize third pose with some noise, we expect it to move back to
|
||||
// original pose3
|
||||
values.insert(x3, wTb3 * noise_pose);
|
||||
|
||||
LevenbergMarquardtParams lmParams;
|
||||
Values result;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||
result = optimizer.optimize();
|
||||
EXPECT(assert_equal(wTb3, result.at<Pose3>(x3)));
|
||||
}
|
||||
|
||||
/* *************************************************************************/
|
||||
TEST( SmartProjectionRigFactor, 3poses_smart_projection_factor ) {
|
||||
|
||||
using namespace vanillaPose2;
|
||||
Point2Vector measurements_cam1, measurements_cam2, measurements_cam3;
|
||||
|
||||
Cameras cameraRig; // single camera in the rig
|
||||
cameraRig.push_back( Camera(Pose3::identity(), sharedK2) );
|
||||
|
||||
// Project three landmarks into three cameras
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark1, measurements_cam1);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark2, measurements_cam2);
|
||||
projectToMultipleCameras(cam1, cam2, cam3, landmark3, measurements_cam3);
|
||||
|
||||
KeyVector views {x1,x2,x3};
|
||||
FastVector<size_t> cameraIds{0,0,0};// 3 measurements from the same camera in the rig
|
||||
|
||||
SmartFactorP::shared_ptr smartFactor1(new SmartFactorP(model,cameraRig));
|
||||
smartFactor1->add(measurements_cam1, views, cameraIds);
|
||||
|
||||
SmartFactorP::shared_ptr smartFactor2(new SmartFactorP(model,cameraRig));
|
||||
smartFactor2->add(measurements_cam2, views, cameraIds);
|
||||
|
||||
SmartFactorP::shared_ptr smartFactor3(new SmartFactorP(model,cameraRig));
|
||||
smartFactor3->add(measurements_cam3, views, cameraIds);
|
||||
|
||||
const SharedDiagonal noisePrior = noiseModel::Isotropic::Sigma(6, 0.10);
|
||||
|
||||
NonlinearFactorGraph graph;
|
||||
graph.push_back(smartFactor1);
|
||||
graph.push_back(smartFactor2);
|
||||
graph.push_back(smartFactor3);
|
||||
graph.addPrior(x1, cam1.pose(), noisePrior);
|
||||
graph.addPrior(x2, cam2.pose(), noisePrior);
|
||||
|
||||
Values groundTruth;
|
||||
groundTruth.insert(x1, cam1.pose());
|
||||
groundTruth.insert(x2, cam2.pose());
|
||||
groundTruth.insert(x3, cam3.pose());
|
||||
DOUBLES_EQUAL(0, graph.error(groundTruth), 1e-9);
|
||||
|
||||
// Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI/10, 0., -M_PI/10), Point3(0.5,0.1,0.3)); // noise from regular projection factor test below
|
||||
Pose3 noise_pose = Pose3(Rot3::Ypr(-M_PI / 100, 0., -M_PI / 100),
|
||||
Point3(0.1, 0.1, 0.1)); // smaller noise
|
||||
Values values;
|
||||
values.insert(x1, cam1.pose());
|
||||
values.insert(x2, cam2.pose());
|
||||
// initialize third pose with some noise, we expect it to move back to original pose_above
|
||||
values.insert(x3, pose_above * noise_pose);
|
||||
EXPECT(
|
||||
assert_equal(
|
||||
Pose3(
|
||||
Rot3(0, -0.0314107591, 0.99950656, -0.99950656, -0.0313952598,
|
||||
-0.000986635786, 0.0314107591, -0.999013364, -0.0313952598),
|
||||
Point3(0.1, -0.1, 1.9)),
|
||||
values.at<Pose3>(x3)));
|
||||
|
||||
Values result;
|
||||
LevenbergMarquardtOptimizer optimizer(graph, values, lmParams);
|
||||
result = optimizer.optimize();
|
||||
EXPECT(assert_equal(pose_above, result.at<Pose3>(x3), 1e-6));
|
||||
}
|
||||
|
||||
///* *************************************************************************/
|
||||
//TEST( SmartProjectionRigFactor, Factors ) {
|
||||
//
|
||||
|
|
|
|||
Loading…
Reference in New Issue