Got rid of CRTP
parent
1bbbb7ad56
commit
111d0d39dd
|
@ -128,7 +128,7 @@ compose_pow(const G& g, size_t n) {
|
|||
|
||||
/// Template to construct the direct product of two arbitrary groups
|
||||
/// Assumes nothing except group structure from G and H
|
||||
template<class Derived, typename G, typename H>
|
||||
template<typename G, typename H>
|
||||
class DirectProduct: public std::pair<G, H> {
|
||||
BOOST_CONCEPT_ASSERT((IsGroup<G>));
|
||||
BOOST_CONCEPT_ASSERT((IsGroup<H>));
|
||||
|
@ -140,23 +140,23 @@ public:
|
|||
// Construct from two subgroup elements
|
||||
DirectProduct(const G& g, const H& h):std::pair<G,H>(g,h) {}
|
||||
|
||||
Derived operator*(const Derived& other) const {
|
||||
return Derived(traits<G>::Compose(this->first, other.first),
|
||||
DirectProduct operator*(const DirectProduct& other) const {
|
||||
return DirectProduct(traits<G>::Compose(this->first, other.first),
|
||||
traits<H>::Compose(this->second, other.second));
|
||||
}
|
||||
Derived inverse() const {
|
||||
return Derived(this->first.inverse(), this->second.inverse());
|
||||
DirectProduct inverse() const {
|
||||
return DirectProduct(this->first.inverse(), this->second.inverse());
|
||||
}
|
||||
};
|
||||
|
||||
// Define any direct product group to be a model of the multiplicative Group concept
|
||||
template<class Derived, typename G, typename H>
|
||||
struct traits<DirectProduct<Derived, G, H> > :
|
||||
internal::MultiplicativeGroupTraits<DirectProduct<Derived, G, H> > {};
|
||||
template<typename G, typename H>
|
||||
struct traits<DirectProduct<G, H> > :
|
||||
internal::MultiplicativeGroupTraits<DirectProduct<G, H> > {};
|
||||
|
||||
/// Template to construct the direct sum of two additive groups
|
||||
/// Assumes existence of three additive operators for both groups
|
||||
template<class Derived, typename G, typename H>
|
||||
template<typename G, typename H>
|
||||
class DirectSum: public std::pair<G, H> {
|
||||
BOOST_CONCEPT_ASSERT((IsGroup<G>)); // TODO(frank): check additive
|
||||
BOOST_CONCEPT_ASSERT((IsGroup<H>)); // TODO(frank): check additive
|
||||
|
@ -171,21 +171,21 @@ public:
|
|||
// Construct from two subgroup elements
|
||||
DirectSum(const G& g, const H& h):std::pair<G,H>(g,h) {}
|
||||
|
||||
Derived operator+(const Derived& other) const {
|
||||
DirectSum operator+(const DirectSum& other) const {
|
||||
return DirectSum(g()+other.g(), h()+other.h());
|
||||
}
|
||||
Derived operator-(const Derived& other) const {
|
||||
return Derived(g()-other.g(), h()-other.h());
|
||||
DirectSum operator-(const DirectSum& other) const {
|
||||
return DirectSum(g()-other.g(), h()-other.h());
|
||||
}
|
||||
Derived operator-() const {
|
||||
return Derived(- g(), - h());
|
||||
DirectSum operator-() const {
|
||||
return DirectSum(- g(), - h());
|
||||
}
|
||||
};
|
||||
|
||||
// Define direct sums to be a model of the Additive Group concept
|
||||
template<class Derived, typename G, typename H>
|
||||
struct traits<DirectSum<Derived, G, H> > :
|
||||
internal::AdditiveGroupTraits<DirectSum<Derived, G, H> > {};
|
||||
template<typename G, typename H>
|
||||
struct traits<DirectSum<G, H> > :
|
||||
internal::AdditiveGroupTraits<DirectSum<G, H> > {};
|
||||
|
||||
} // namespace gtsam
|
||||
|
||||
|
|
|
@ -170,14 +170,14 @@ struct FixedDimension {
|
|||
"FixedDimension instantiated for dymanically-sized type.");
|
||||
};
|
||||
|
||||
/// CRTP to construct the product manifold of two other manifolds, M1 and M2
|
||||
/// Assumes manifold structure from M1 and M2, and binary constructor
|
||||
template<class Derived, typename M1, typename M2>
|
||||
/// Helper class to construct the product manifold of two other manifolds, M1 and M2
|
||||
/// Assumes nothing except manifold structure from M1 and M2
|
||||
template<typename M1, typename M2>
|
||||
class ProductManifold: public std::pair<M1, M2> {
|
||||
BOOST_CONCEPT_ASSERT((IsManifold<M1>));
|
||||
BOOST_CONCEPT_ASSERT((IsManifold<M2>));
|
||||
|
||||
private:
|
||||
protected:
|
||||
enum { dimension1 = traits<M1>::dimension };
|
||||
enum { dimension2 = traits<M2>::dimension };
|
||||
|
||||
|
@ -196,14 +196,14 @@ public:
|
|||
ProductManifold(const M1& m1, const M2& m2):std::pair<M1,M2>(m1,m2) {}
|
||||
|
||||
/// Retract delta to manifold
|
||||
Derived retract(const TangentVector& xi) const {
|
||||
ProductManifold retract(const TangentVector& xi) const {
|
||||
M1 m1 = traits<M1>::Retract(this->first, xi.template head<dimension1>());
|
||||
M2 m2 = traits<M2>::Retract(this->second, xi.template tail<dimension2>());
|
||||
return Derived(m1,m2);
|
||||
return ProductManifold(m1,m2);
|
||||
}
|
||||
|
||||
/// Compute the coordinates in the tangent space
|
||||
TangentVector localCoordinates(const Derived& other) const {
|
||||
TangentVector localCoordinates(const ProductManifold& other) const {
|
||||
typename traits<M1>::TangentVector v1 = traits<M1>::Local(this->first, other.first);
|
||||
typename traits<M2>::TangentVector v2 = traits<M2>::Local(this->second, other.second);
|
||||
TangentVector v;
|
||||
|
@ -213,9 +213,8 @@ public:
|
|||
};
|
||||
|
||||
// Define any direct product group to be a model of the multiplicative Group concept
|
||||
template<class Derived, typename M1, typename M2>
|
||||
struct traits<ProductManifold<Derived, M1, M2> > : internal::Manifold<
|
||||
ProductManifold<Derived, M1, M2> > {
|
||||
template<typename M1, typename M2>
|
||||
struct traits<ProductManifold<M1, M2> > : internal::Manifold<ProductManifold<M1, M2> > {
|
||||
};
|
||||
|
||||
} // \ namespace gtsam
|
||||
|
|
|
@ -103,11 +103,7 @@ TEST(Group, S3) {
|
|||
//******************************************************************************
|
||||
// The direct product of S2=Z2 and S3 is the symmetry group of a hexagon,
|
||||
// i.e., the dihedral group of order 12 (denoted Dih6 because 6-sided polygon)
|
||||
struct Dih6 : DirectProduct<Dih6, S2, S3> {
|
||||
typedef DirectProduct<Dih6, S2, S3> Base;
|
||||
Dih6(const S2& g, const S3& h):Base(g,h) {}
|
||||
Dih6() {}
|
||||
};
|
||||
typedef DirectProduct<S2, S3> Dih6;
|
||||
|
||||
std::ostream &operator<<(std::ostream &os, const Dih6& m) {
|
||||
os << "( " << m.first << ", " << m.second << ")";
|
||||
|
|
|
@ -21,13 +21,17 @@ namespace gtsam {
|
|||
* but here we choose instead to parameterize it as a (Rot3,Unit3) pair.
|
||||
* We can then non-linearly optimize immediately on this 5-dimensional manifold.
|
||||
*/
|
||||
class GTSAM_EXPORT EssentialMatrix : private ProductManifold<EssentialMatrix, Rot3, Unit3> {
|
||||
class GTSAM_EXPORT EssentialMatrix : private ProductManifold<Rot3, Unit3> {
|
||||
|
||||
private:
|
||||
friend class ProductManifold<EssentialMatrix, Rot3, Unit3>;
|
||||
typedef ProductManifold<EssentialMatrix, Rot3, Unit3> Base;
|
||||
typedef ProductManifold<Rot3, Unit3> Base;
|
||||
Matrix3 E_; ///< Essential matrix
|
||||
|
||||
/// Construct from Base
|
||||
EssentialMatrix(const Base& base) :
|
||||
Base(base), E_(direction().skew() * rotation().matrix()) {
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
/// Static function to convert Point2 to homogeneous coordinates
|
||||
|
@ -82,9 +86,16 @@ public:
|
|||
using Base::dimension;
|
||||
using Base::dim;
|
||||
using Base::Dim;
|
||||
using Base::retract;
|
||||
using Base::localCoordinates;
|
||||
|
||||
/// Retract delta to manifold
|
||||
EssentialMatrix retract(const TangentVector& v) const {
|
||||
return Base::retract(v);
|
||||
}
|
||||
|
||||
/// Compute the coordinates in the tangent space
|
||||
TangentVector localCoordinates(const EssentialMatrix& other) const {
|
||||
return Base::localCoordinates(other);
|
||||
}
|
||||
/// @}
|
||||
|
||||
/// @name Essential matrix methods
|
||||
|
|
|
@ -87,12 +87,7 @@ TEST(Cyclic , Invariants) {
|
|||
//******************************************************************************
|
||||
// The Direct sum of Z2 and Z2 is *not* Cyclic<4>, but the
|
||||
// smallest non-cyclic group called the Klein four-group:
|
||||
struct K4: DirectSum<K4, Z2, Z2> {
|
||||
typedef DirectSum<K4, Z2, Z2> Base;
|
||||
K4(const Z2& g, const Z2& h):Base(g,h) {}
|
||||
K4(const Base& base):Base(base) {}
|
||||
K4() {}
|
||||
};
|
||||
typedef DirectSum<Z2, Z2> K4;
|
||||
|
||||
namespace gtsam {
|
||||
|
||||
|
|
|
@ -10,13 +10,14 @@
|
|||
* -------------------------------1------------------------------------------- */
|
||||
|
||||
/**
|
||||
* @file testExpression.cpp
|
||||
* @file testManifold.cpp
|
||||
* @date September 18, 2014
|
||||
* @author Frank Dellaert
|
||||
* @author Paul Furgale
|
||||
* @brief unit tests for Block Automatic Differentiation
|
||||
* @brief unit tests for Manifold type machinery
|
||||
*/
|
||||
|
||||
#include <gtsam/base/Manifold.h>
|
||||
#include <gtsam/geometry/PinholeCamera.h>
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
#include <gtsam/geometry/Cal3_S2.h>
|
||||
|
@ -149,12 +150,7 @@ TEST(Manifold, DefaultChart) {
|
|||
}
|
||||
|
||||
//******************************************************************************
|
||||
struct MyPoint2Pair : public ProductManifold<MyPoint2Pair,Point2,Point2> {
|
||||
typedef ProductManifold<MyPoint2Pair,Point2,Point2> Base;
|
||||
MyPoint2Pair(const Point2& p1, const Point2& p2):Base(p1,p2) {}
|
||||
MyPoint2Pair(const Base& base):Base(base) {}
|
||||
MyPoint2Pair() {}
|
||||
};
|
||||
typedef ProductManifold<Point2,Point2> MyPoint2Pair;
|
||||
|
||||
// Define any direct product group to be a model of the multiplicative Group concept
|
||||
namespace gtsam {
|
||||
|
|
Loading…
Reference in New Issue