Test for not increasing graph size when adding marginal factors

release/4.3a0
Grady Williams 2022-04-16 13:53:39 -07:00 committed by Fan Jiang
parent 62d29cf55f
commit 110086749f
1 changed files with 110 additions and 0 deletions

View File

@ -864,6 +864,116 @@ TEST(ISAM2, marginalizeLeaves5)
EXPECT(checkMarginalizeLeaves(isam, marginalizeKeys));
}
/* ************************************************************************* */
TEST(ISAM2, marginalizeLeaves6)
{
const boost::shared_ptr<noiseModel::Isotropic> nm = noiseModel::Isotropic::Sigma(6, 1.0);
int gridDim = 10;
auto idxToKey = [gridDim](int i, int j){return i * gridDim + j;};
NonlinearFactorGraph factors;
Values values;
ISAM2 isam;
// Create a grid of pose variables
for (int i = 0; i < gridDim; ++i) {
for (int j = 0; j < gridDim; ++j) {
Pose3 pose = Pose3(Rot3::identity(), Point3(i, j, 0));
Key key = idxToKey(i, j);
// Place a prior on the first pose
factors.addPrior(key, Pose3(Rot3::identity(), Point3(i, j, 0)), nm);
values.insert(key, pose);
if (i > 0) {
factors.emplace_shared<BetweenFactor<Pose3>>(idxToKey(i - 1, j), key, Pose3(Rot3::identity(), Point3(1, 0, 0)),nm);
}
if (j > 0) {
factors.emplace_shared<BetweenFactor<Pose3>>(idxToKey(i, j - 1), key, Pose3(Rot3::identity(), Point3(0, 1, 0)),nm);
}
}
}
// Optimize the graph
EXPECT(updateAndMarginalize(factors, values, {}, isam));
auto estimate = isam.calculateBestEstimate();
// Get the list of keys
std::vector<Key> key_list(gridDim * gridDim);
std::iota(key_list.begin(), key_list.end(), 0);
// Shuffle the keys -> we will marginalize the keys one by one in this order
std::shuffle(key_list.begin(), key_list.end(), std::default_random_engine(1234));
for (const auto& key : key_list) {
KeySet marginalKeys;
marginalKeys.insert(key);
EXPECT(updateAndMarginalize({}, {}, marginalKeys, isam));
estimate = isam.calculateBestEstimate();
}
}
/* ************************************************************************* */
TEST(ISAM2, MarginalizeRoot)
{
const boost::shared_ptr<noiseModel::Isotropic> nm = noiseModel::Isotropic::Sigma(6, 1.0);
NonlinearFactorGraph factors;
Values values;
ISAM2 isam;
// Create a factor graph with one variable and a prior
Pose3 root = Pose3::identity();
Key rootKey(0);
values.insert(rootKey, root);
factors.addPrior(rootKey, Pose3::identity(), nm);
// Optimize the graph
EXPECT(updateAndMarginalize(factors, values, {}, isam));
auto estimate = isam.calculateBestEstimate();
EXPECT(estimate.size() == 1);
// And remove the node from the graph
KeySet marginalizableKeys;
marginalizableKeys.insert(rootKey);
EXPECT(updateAndMarginalize({}, {}, marginalizableKeys, isam));
estimate = isam.calculateBestEstimate();
EXPECT(estimate.empty());
}
/* ************************************************************************* */
TEST(ISAM2, marginalizationSize)
{
const boost::shared_ptr<noiseModel::Isotropic> nm = noiseModel::Isotropic::Sigma(6, 1.0);
NonlinearFactorGraph factors;
Values values;
ISAM2Params params;
params.findUnusedFactorSlots = true;
ISAM2 isam{params};
// Create a pose variable
Key aKey(0);
values.insert(aKey, Pose3::identity());
factors.addPrior(aKey, Pose3::identity(), nm);
// Create another pose variable linked to the first
Pose3 b = Pose3::identity();
Key bKey(1);
values.insert(bKey, Pose3::identity());
factors.emplace_shared<BetweenFactor<Pose3>>(aKey, bKey, Pose3::identity(), nm);
// Optimize the graph
EXPECT(updateAndMarginalize(factors, values, {}, isam));
// Now remove a variable -> we should not see the number of factors increase
gtsam::KeySet to_remove;
to_remove.insert(aKey);
const auto numFactorsBefore = isam.getFactorsUnsafe().size();
updateAndMarginalize({}, {}, to_remove, isam);
EXPECT(numFactorsBefore == isam.getFactorsUnsafe().size());
}
/* ************************************************************************* */
TEST(ISAM2, marginalCovariance)
{