diff --git a/examples/LocalizationExample.cpp b/examples/LocalizationExample.cpp index ae2a31040..6963f75f1 100644 --- a/examples/LocalizationExample.cpp +++ b/examples/LocalizationExample.cpp @@ -57,7 +57,6 @@ int main(int argc, char** argv) { initialEstimate.insertPose(1, Pose2(0.5, 0.0, 0.2)); initialEstimate.insertPose(2, Pose2(2.3, 0.1,-0.2)); initialEstimate.insertPose(3, Pose2(4.1, 0.1, 0.1)); - initialEstimate.print("\nInitial estimate:\n "); // optimize using Levenberg-Marquardt optimization with an ordering from colamd diff --git a/examples/Pose2SLAMExample_easy.cpp b/examples/Pose2SLAMExample_easy.cpp index 18a756aba..b6507d7fc 100644 --- a/examples/Pose2SLAMExample_easy.cpp +++ b/examples/Pose2SLAMExample_easy.cpp @@ -11,59 +11,54 @@ /** * @file Pose2SLAMExample_easy.cpp - * - * A 2D Pose SLAM example using the predefined typedefs in gtsam/slam/pose2SLAM.h - * + * @brief A 2D Pose SLAM example using the predefined typedefs in gtsam/slam/pose2SLAM.h * @date Oct 21, 2010 - * @author ydjian + * @author Yong Dian Jian */ -#include -#include -#include - // pull in the Pose2 SLAM domain with all typedefs and helper functions defined #include -#include +#include using namespace std; using namespace gtsam; -using namespace pose2SLAM; int main(int argc, char** argv) { - /* 1. create graph container and add factors to it */ - Graph graph ; + // 1. Create graph container and add factors to it + pose2SLAM::Graph graph ; - /* 2.a add prior */ - // gaussian for prior - SharedDiagonal prior_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.3, 0.3, 0.1)); - Pose2 prior_measurement(0.0, 0.0, 0.0); // prior at origin - graph.addPrior(1, prior_measurement, prior_model); // add directly to graph + // 2a. Add Gaussian prior + Pose2 priorMean(0.0, 0.0, 0.0); // prior at origin + SharedDiagonal priorNoise(Vector_(3, 0.3, 0.3, 0.1)); + graph.addPrior(1, priorMean, priorNoise); - /* 2.b add odometry */ - // general noisemodel for odometry - SharedDiagonal odom_model = noiseModel::Diagonal::Sigmas(Vector_(3, 0.2, 0.2, 0.1)); + // 2b. Add odometry factors + SharedDiagonal odometryNoise(Vector_(3, 0.2, 0.2, 0.1)); + graph.addOdometry(1, 2, Pose2(2.0, 0.0, 0.0 ), odometryNoise); + graph.addOdometry(2, 3, Pose2(2.0, 0.0, M_PI_2), odometryNoise); + graph.addOdometry(3, 4, Pose2(2.0, 0.0, M_PI_2), odometryNoise); + graph.addOdometry(4, 5, Pose2(2.0, 0.0, M_PI_2), odometryNoise); - /* Pose2 measurements take (x,y,theta), where theta is taken from the positive x-axis*/ - Pose2 odom_measurement(2.0, 0.0, 0.0); // create a measurement for both factors (the same in this case) - graph.addOdometry(1, 2, odom_measurement, odom_model); - graph.addOdometry(2, 3, odom_measurement, odom_model); - graph.print("full graph"); + // 2c. Add pose constraint + SharedDiagonal constraintUncertainty(Vector_(3, 0.2, 0.2, 0.1)); + graph.addConstraint(5, 2, Pose2(2.0, 0.0, M_PI_2), constraintUncertainty); - /* 3. Create the data structure to hold the initial estinmate to the solution - * initialize to noisy points */ - pose2SLAM::Values initial; - initial.insertPose(1, Pose2(0.5, 0.0, 0.2)); - initial.insertPose(2, Pose2(2.3, 0.1,-0.2)); - initial.insertPose(3, Pose2(4.1, 0.1, 0.1)); - initial.print("initial estimate"); + // print + graph.print("\nFactor graph:\n"); - /* 4 Single Step Optimization - * optimize using Levenberg-Marquardt optimization with an ordering from colamd */ - pose2SLAM::Values result = graph.optimize(initial); - result.print("final result"); + // 3. Create the data structure to hold the initialEstimate estinmate to the solution + pose2SLAM::Values initialEstimate; + Pose2 x1(0.5, 0.0, 0.2 ); initialEstimate.insertPose(1, x1); + Pose2 x2(2.3, 0.1,-0.2 ); initialEstimate.insertPose(2, x2); + Pose2 x3(4.1, 0.1, M_PI_2); initialEstimate.insertPose(3, x3); + Pose2 x4(4.0, 2.0, M_PI ); initialEstimate.insertPose(4, x4); + Pose2 x5(2.1, 2.1,-M_PI_2); initialEstimate.insertPose(5, x5); + initialEstimate.print("\nInitial estimate:\n "); + // 4. Single Step Optimization using Levenberg-Marquardt + pose2SLAM::Values result = graph.optimize(initialEstimate); + result.print("\nFinal result:\n "); return 0; }