Merge pull request #696 from borglab/feature/smartFactorsWithExtrinsicCalibration

smart factors with extrinsics calibration
release/4.3a0
Frank Dellaert 2021-05-27 10:41:33 -04:00 committed by GitHub
commit 1011055007
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 1822 additions and 41 deletions

View File

@ -139,6 +139,57 @@ public:
return ErrorVector(project2(point, Fs, E), measured); return ErrorVector(project2(point, Fs, E), measured);
} }
/**
* Do Schur complement, given Jacobian as Fs,E,P, return SymmetricBlockMatrix
* G = F' * F - F' * E * P * E' * F
* g = F' * (b - E * P * E' * b)
* Fixed size version
*/
template<int N, int ND> // N = 2 or 3, ND is the camera dimension
static SymmetricBlockMatrix SchurComplement(
const std::vector< Eigen::Matrix<double, ZDim, ND>, Eigen::aligned_allocator< Eigen::Matrix<double, ZDim, ND> > >& Fs,
const Matrix& E, const Eigen::Matrix<double, N, N>& P, const Vector& b) {
// a single point is observed in m cameras
size_t m = Fs.size();
// Create a SymmetricBlockMatrix (augmented hessian, with extra row/column with info vector)
size_t M1 = ND * m + 1;
std::vector<DenseIndex> dims(m + 1); // this also includes the b term
std::fill(dims.begin(), dims.end() - 1, ND);
dims.back() = 1;
SymmetricBlockMatrix augmentedHessian(dims, Matrix::Zero(M1, M1));
// Blockwise Schur complement
for (size_t i = 0; i < m; i++) { // for each camera
const Eigen::Matrix<double, ZDim, ND>& Fi = Fs[i];
const auto FiT = Fi.transpose();
const Eigen::Matrix<double, ZDim, N> Ei_P = //
E.block(ZDim * i, 0, ZDim, N) * P;
// D = (Dx2) * ZDim
augmentedHessian.setOffDiagonalBlock(i, m, FiT * b.segment<ZDim>(ZDim * i) // F' * b
- FiT * (Ei_P * (E.transpose() * b))); // D = (DxZDim) * (ZDimx3) * (N*ZDimm) * (ZDimm x 1)
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
augmentedHessian.setDiagonalBlock(i, FiT
* (Fi - Ei_P * E.block(ZDim * i, 0, ZDim, N).transpose() * Fi));
// upper triangular part of the hessian
for (size_t j = i + 1; j < m; j++) { // for each camera
const Eigen::Matrix<double, ZDim, ND>& Fj = Fs[j];
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
augmentedHessian.setOffDiagonalBlock(i, j, -FiT
* (Ei_P * E.block(ZDim * j, 0, ZDim, N).transpose() * Fj));
}
} // end of for over cameras
augmentedHessian.diagonalBlock(m)(0, 0) += b.squaredNorm();
return augmentedHessian;
}
/** /**
* Do Schur complement, given Jacobian as Fs,E,P, return SymmetricBlockMatrix * Do Schur complement, given Jacobian as Fs,E,P, return SymmetricBlockMatrix
* G = F' * F - F' * E * P * E' * F * G = F' * F - F' * E * P * E' * F
@ -148,45 +199,7 @@ public:
template<int N> // N = 2 or 3 template<int N> // N = 2 or 3
static SymmetricBlockMatrix SchurComplement(const FBlocks& Fs, static SymmetricBlockMatrix SchurComplement(const FBlocks& Fs,
const Matrix& E, const Eigen::Matrix<double, N, N>& P, const Vector& b) { const Matrix& E, const Eigen::Matrix<double, N, N>& P, const Vector& b) {
return SchurComplement<N,D>(Fs, E, P, b);
// a single point is observed in m cameras
size_t m = Fs.size();
// Create a SymmetricBlockMatrix
size_t M1 = D * m + 1;
std::vector<DenseIndex> dims(m + 1); // this also includes the b term
std::fill(dims.begin(), dims.end() - 1, D);
dims.back() = 1;
SymmetricBlockMatrix augmentedHessian(dims, Matrix::Zero(M1, M1));
// Blockwise Schur complement
for (size_t i = 0; i < m; i++) { // for each camera
const MatrixZD& Fi = Fs[i];
const auto FiT = Fi.transpose();
const Eigen::Matrix<double, ZDim, N> Ei_P = //
E.block(ZDim * i, 0, ZDim, N) * P;
// D = (Dx2) * ZDim
augmentedHessian.setOffDiagonalBlock(i, m, FiT * b.segment<ZDim>(ZDim * i) // F' * b
- FiT * (Ei_P * (E.transpose() * b))); // D = (DxZDim) * (ZDimx3) * (N*ZDimm) * (ZDimm x 1)
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
augmentedHessian.setDiagonalBlock(i, FiT
* (Fi - Ei_P * E.block(ZDim * i, 0, ZDim, N).transpose() * Fi));
// upper triangular part of the hessian
for (size_t j = i + 1; j < m; j++) { // for each camera
const MatrixZD& Fj = Fs[j];
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
augmentedHessian.setOffDiagonalBlock(i, j, -FiT
* (Ei_P * E.block(ZDim * j, 0, ZDim, N).transpose() * Fj));
}
} // end of for over cameras
augmentedHessian.diagonalBlock(m)(0, 0) += b.squaredNorm();
return augmentedHessian;
} }
/// Computes Point Covariance P, with lambda parameter /// Computes Point Covariance P, with lambda parameter

View File

@ -450,8 +450,8 @@ public:
* This corrects the Jacobians and error vector for the case in which the right pixel in the monocular camera is missing (nan) * This corrects the Jacobians and error vector for the case in which the right pixel in the monocular camera is missing (nan)
*/ */
void correctForMissingMeasurements(const Cameras& cameras, Vector& ue, void correctForMissingMeasurements(const Cameras& cameras, Vector& ue,
boost::optional<typename Cameras::FBlocks&> Fs = boost::none, boost::optional<typename Cameras::FBlocks&> Fs = boost::none,
boost::optional<Matrix&> E = boost::none) const override boost::optional<Matrix&> E = boost::none) const override
{ {
// when using stereo cameras, some of the measurements might be missing: // when using stereo cameras, some of the measurements might be missing:
for(size_t i=0; i < cameras.size(); i++){ for(size_t i=0; i < cameras.size(); i++){

View File

@ -0,0 +1,125 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SmartStereoProjectionFactorPP.h
* @brief Smart stereo factor on poses and extrinsic calibration
* @author Luca Carlone
* @author Frank Dellaert
*/
#include <gtsam_unstable/slam/SmartStereoProjectionFactorPP.h>
namespace gtsam {
SmartStereoProjectionFactorPP::SmartStereoProjectionFactorPP(
const SharedNoiseModel& sharedNoiseModel,
const SmartStereoProjectionParams& params)
: Base(sharedNoiseModel, params) {} // note: no extrinsic specified!
void SmartStereoProjectionFactorPP::add(
const StereoPoint2& measured,
const Key& w_P_body_key, const Key& body_P_cam_key,
const boost::shared_ptr<Cal3_S2Stereo>& K) {
// we index by cameras..
Base::add(measured, w_P_body_key);
// but we also store the extrinsic calibration keys in the same order
world_P_body_keys_.push_back(w_P_body_key);
body_P_cam_keys_.push_back(body_P_cam_key);
// pose keys are assumed to be unique (1 observation per time stamp), but calibration can be shared
if(std::find(keys_.begin(), keys_.end(), body_P_cam_key) == keys_.end())
keys_.push_back(body_P_cam_key); // add only unique keys
K_all_.push_back(K);
}
void SmartStereoProjectionFactorPP::add(
const std::vector<StereoPoint2>& measurements,
const KeyVector& world_P_body_keys, const KeyVector& body_P_cam_keys,
const std::vector<boost::shared_ptr<Cal3_S2Stereo>>& Ks) {
assert(world_P_body_keys.size() == measurements.size());
assert(world_P_body_keys.size() == body_P_cam_keys.size());
assert(world_P_body_keys.size() == Ks.size());
for (size_t i = 0; i < measurements.size(); i++) {
Base::add(measurements[i], world_P_body_keys[i]);
// pose keys are assumed to be unique (1 observation per time stamp), but calibration can be shared
if(std::find(keys_.begin(), keys_.end(), body_P_cam_keys[i]) == keys_.end())
keys_.push_back(body_P_cam_keys[i]); // add only unique keys
world_P_body_keys_.push_back(world_P_body_keys[i]);
body_P_cam_keys_.push_back(body_P_cam_keys[i]);
K_all_.push_back(Ks[i]);
}
}
void SmartStereoProjectionFactorPP::add(
const std::vector<StereoPoint2>& measurements,
const KeyVector& world_P_body_keys, const KeyVector& body_P_cam_keys,
const boost::shared_ptr<Cal3_S2Stereo>& K) {
assert(world_P_body_keys.size() == measurements.size());
assert(world_P_body_keys.size() == body_P_cam_keys.size());
for (size_t i = 0; i < measurements.size(); i++) {
Base::add(measurements[i], world_P_body_keys[i]);
// pose keys are assumed to be unique (1 observation per time stamp), but calibration can be shared
if(std::find(keys_.begin(), keys_.end(), body_P_cam_keys[i]) == keys_.end())
keys_.push_back(body_P_cam_keys[i]); // add only unique keys
world_P_body_keys_.push_back(world_P_body_keys[i]);
body_P_cam_keys_.push_back(body_P_cam_keys[i]);
K_all_.push_back(K);
}
}
void SmartStereoProjectionFactorPP::print(
const std::string& s, const KeyFormatter& keyFormatter) const {
std::cout << s << "SmartStereoProjectionFactorPP: \n ";
for (size_t i = 0; i < K_all_.size(); i++) {
K_all_[i]->print("calibration = ");
std::cout << " extrinsic pose key: " << keyFormatter(body_P_cam_keys_[i]) << std::endl;
}
Base::print("", keyFormatter);
}
bool SmartStereoProjectionFactorPP::equals(const NonlinearFactor& p,
double tol) const {
const SmartStereoProjectionFactorPP* e =
dynamic_cast<const SmartStereoProjectionFactorPP*>(&p);
return e && Base::equals(p, tol) &&
body_P_cam_keys_ == e->getExtrinsicPoseKeys();
}
double SmartStereoProjectionFactorPP::error(const Values& values) const {
if (this->active(values)) {
return this->totalReprojectionError(cameras(values));
} else { // else of active flag
return 0.0;
}
}
SmartStereoProjectionFactorPP::Base::Cameras
SmartStereoProjectionFactorPP::cameras(const Values& values) const {
assert(world_P_body_keys_.size() == K_all_.size());
assert(world_P_body_keys_.size() == body_P_cam_keys_.size());
Base::Cameras cameras;
for (size_t i = 0; i < world_P_body_keys_.size(); i++) {
Pose3 w_P_body = values.at<Pose3>(world_P_body_keys_[i]);
Pose3 body_P_cam = values.at<Pose3>(body_P_cam_keys_[i]);
Pose3 w_P_cam = w_P_body.compose(body_P_cam);
cameras.push_back(StereoCamera(w_P_cam, K_all_[i]));
}
return cameras;
}
} // \ namespace gtsam

View File

@ -0,0 +1,369 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file SmartStereoProjectionFactorPP.h
* @brief Smart stereo factor on poses (P) and camera extrinsic pose (P) calibrations
* @author Luca Carlone
* @author Frank Dellaert
*/
#pragma once
#include <gtsam_unstable/slam/SmartStereoProjectionFactor.h>
namespace gtsam {
/**
*
* @addtogroup SLAM
*
* If you are using the factor, please cite:
* L. Carlone, Z. Kira, C. Beall, V. Indelman, F. Dellaert,
* Eliminating conditionally independent sets in factor graphs:
* a unifying perspective based on smart factors,
* Int. Conf. on Robotics and Automation (ICRA), 2014.
*/
/**
* This factor optimizes the pose of the body as well as the extrinsic camera calibration (pose of camera wrt body).
* Each camera may have its own extrinsic calibration or the same calibration can be shared by multiple cameras.
* This factor requires that values contain the involved poses and extrinsics (both are Pose3 variables).
* @addtogroup SLAM
*/
class SmartStereoProjectionFactorPP : public SmartStereoProjectionFactor {
protected:
/// shared pointer to calibration object (one for each camera)
std::vector<boost::shared_ptr<Cal3_S2Stereo>> K_all_;
/// The keys corresponding to the pose of the body (with respect to an external world frame) for each view
KeyVector world_P_body_keys_;
/// The keys corresponding to the extrinsic pose calibration for each view (pose that transform from camera to body)
KeyVector body_P_cam_keys_;
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
/// shorthand for base class type
typedef SmartStereoProjectionFactor Base;
/// shorthand for this class
typedef SmartStereoProjectionFactorPP This;
/// shorthand for a smart pointer to a factor
typedef boost::shared_ptr<This> shared_ptr;
static const int Dim = 12; ///< Camera dimension: 6 for body pose, 6 for extrinsic pose
static const int DimPose = 6; ///< Pose3 dimension
static const int ZDim = 3; ///< Measurement dimension (for a StereoPoint2 measurement)
typedef Eigen::Matrix<double, ZDim, Dim> MatrixZD; // F blocks (derivatives wrt camera)
typedef std::vector<MatrixZD, Eigen::aligned_allocator<MatrixZD> > FBlocks; // vector of F blocks
/**
* Constructor
* @param Isotropic measurement noise
* @param params internal parameters of the smart factors
*/
SmartStereoProjectionFactorPP(const SharedNoiseModel& sharedNoiseModel,
const SmartStereoProjectionParams& params =
SmartStereoProjectionParams());
/** Virtual destructor */
~SmartStereoProjectionFactorPP() override = default;
/**
* add a new measurement, with a pose key, and an extrinsic pose key
* @param measured is the 3-dimensional location of the projection of a
* single landmark in the a single (stereo) view (the measurement)
* @param world_P_body_key is the key corresponding to the body poses observing the same landmark
* @param body_P_cam_key is the key corresponding to the extrinsic camera-to-body pose calibration
* @param K is the (fixed) camera intrinsic calibration
*/
void add(const StereoPoint2& measured, const Key& world_P_body_key,
const Key& body_P_cam_key,
const boost::shared_ptr<Cal3_S2Stereo>& K);
/**
* Variant of the previous one in which we include a set of measurements
* @param measurements vector of the 3m dimensional location of the projection
* of a single landmark in the m (stereo) view (the measurements)
* @param w_P_body_keys are the ordered keys corresponding to the body poses observing the same landmark
* @param body_P_cam_keys are the ordered keys corresponding to the extrinsic camera-to-body poses calibration
* (note: elements of this vector do not need to be unique: 2 camera views can share the same calibration)
* @param Ks vector of intrinsic calibration objects
*/
void add(const std::vector<StereoPoint2>& measurements,
const KeyVector& w_P_body_keys, const KeyVector& body_P_cam_keys,
const std::vector<boost::shared_ptr<Cal3_S2Stereo>>& Ks);
/**
* Variant of the previous one in which we include a set of measurements with
* the same noise and calibration
* @param measurements vector of the 3m dimensional location of the projection
* of a single landmark in the m (stereo) view (the measurements)
* @param w_P_body_keys are the ordered keys corresponding to the body poses observing the same landmark
* @param body_P_cam_keys are the ordered keys corresponding to the extrinsic camera-to-body poses calibration
* (note: elements of this vector do not need to be unique: 2 camera views can share the same calibration)
* @param K the (known) camera calibration (same for all measurements)
*/
void add(const std::vector<StereoPoint2>& measurements,
const KeyVector& w_P_body_keys, const KeyVector& body_P_cam_keys,
const boost::shared_ptr<Cal3_S2Stereo>& K);
/**
* print
* @param s optional string naming the factor
* @param keyFormatter optional formatter useful for printing Symbols
*/
void print(const std::string& s = "", const KeyFormatter& keyFormatter =
DefaultKeyFormatter) const override;
/// equals
bool equals(const NonlinearFactor& p, double tol = 1e-9) const override;
/// equals
const KeyVector& getExtrinsicPoseKeys() const {
return body_P_cam_keys_;
}
/**
* error calculates the error of the factor.
*/
double error(const Values& values) const override;
/** return the calibration object */
inline std::vector<boost::shared_ptr<Cal3_S2Stereo>> calibration() const {
return K_all_;
}
/**
* Collect all cameras involved in this factor
* @param values Values structure which must contain camera poses
* corresponding
* to keys involved in this factor
* @return vector of Values
*/
Base::Cameras cameras(const Values& values) const override;
/**
* Compute jacobian F, E and error vector at a given linearization point
* @param values Values structure which must contain camera poses
* corresponding to keys involved in this factor
* @return Return arguments are the camera jacobians Fs (including the jacobian with
* respect to both the body pose and extrinsic pose), the point Jacobian E,
* and the error vector b. Note that the jacobians are computed for a given point.
*/
void computeJacobiansAndCorrectForMissingMeasurements(
FBlocks& Fs, Matrix& E, Vector& b, const Values& values) const {
if (!result_) {
throw("computeJacobiansWithTriangulatedPoint");
} else { // valid result: compute jacobians
size_t numViews = measured_.size();
E = Matrix::Zero(3 * numViews, 3); // a StereoPoint2 for each view (point jacobian)
b = Vector::Zero(3 * numViews); // a StereoPoint2 for each view
Matrix dPoseCam_dPoseBody_i, dPoseCam_dPoseExt_i, dProject_dPoseCam_i, Ei;
for (size_t i = 0; i < numViews; i++) { // for each camera/measurement
Pose3 w_P_body = values.at<Pose3>(world_P_body_keys_.at(i));
Pose3 body_P_cam = values.at<Pose3>(body_P_cam_keys_.at(i));
StereoCamera camera(
w_P_body.compose(body_P_cam, dPoseCam_dPoseBody_i, dPoseCam_dPoseExt_i),
K_all_[i]);
// get jacobians and error vector for current measurement
StereoPoint2 reprojectionError_i = StereoPoint2(
camera.project(*result_, dProject_dPoseCam_i, Ei) - measured_.at(i));
Eigen::Matrix<double, ZDim, Dim> J; // 3 x 12
J.block<ZDim, 6>(0, 0) = dProject_dPoseCam_i * dPoseCam_dPoseBody_i; // (3x6) * (6x6)
J.block<ZDim, 6>(0, 6) = dProject_dPoseCam_i * dPoseCam_dPoseExt_i; // (3x6) * (6x6)
// if the right pixel is invalid, fix jacobians
if (std::isnan(measured_.at(i).uR()))
{
J.block<1, 12>(1, 0) = Matrix::Zero(1, 12);
Ei.block<1, 3>(1, 0) = Matrix::Zero(1, 3);
reprojectionError_i = StereoPoint2(reprojectionError_i.uL(), 0.0,
reprojectionError_i.v());
}
// fit into the output structures
Fs.push_back(J);
size_t row = 3 * i;
b.segment<ZDim>(row) = -reprojectionError_i.vector();
E.block<3, 3>(row, 0) = Ei;
}
}
}
/// linearize and return a Hessianfactor that is an approximation of error(p)
boost::shared_ptr<RegularHessianFactor<DimPose> > createHessianFactor(
const Values& values, const double lambda = 0.0, bool diagonalDamping =
false) const {
// we may have multiple cameras sharing the same extrinsic cals, hence the number
// of keys may be smaller than 2 * nrMeasurements (which is the upper bound where we
// have a body key and an extrinsic calibration key for each measurement)
size_t nrUniqueKeys = keys_.size();
size_t nrNonuniqueKeys = world_P_body_keys_.size()
+ body_P_cam_keys_.size();
// Create structures for Hessian Factors
KeyVector js;
std::vector < Matrix > Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
std::vector<Vector> gs(nrUniqueKeys);
if (this->measured_.size() != cameras(values).size())
throw std::runtime_error("SmartStereoProjectionHessianFactor: this->"
"measured_.size() inconsistent with input");
// triangulate 3D point at given linearization point
triangulateSafe(cameras(values));
if (!result_) { // failed: return "empty/zero" Hessian
for (Matrix& m : Gs)
m = Matrix::Zero(DimPose, DimPose);
for (Vector& v : gs)
v = Vector::Zero(DimPose);
return boost::make_shared < RegularHessianFactor<DimPose>
> (keys_, Gs, gs, 0.0);
}
// compute Jacobian given triangulated 3D Point
FBlocks Fs;
Matrix F, E;
Vector b;
computeJacobiansAndCorrectForMissingMeasurements(Fs, E, b, values);
// Whiten using noise model
noiseModel_->WhitenSystem(E, b);
for (size_t i = 0; i < Fs.size(); i++)
Fs[i] = noiseModel_->Whiten(Fs[i]);
// build augmented Hessian (with last row/column being the information vector)
Matrix3 P;
Cameras::ComputePointCovariance<3>(P, E, lambda, diagonalDamping);
// marginalize point: note - we reuse the standard SchurComplement function
SymmetricBlockMatrix augmentedHessian =
Cameras::SchurComplement<3, Dim>(Fs, E, P, b);
// now pack into an Hessian factor
std::vector<DenseIndex> dims(nrUniqueKeys + 1); // this also includes the b term
std::fill(dims.begin(), dims.end() - 1, 6);
dims.back() = 1;
SymmetricBlockMatrix augmentedHessianUniqueKeys;
// here we have to deal with the fact that some cameras may share the same extrinsic key
if (nrUniqueKeys == nrNonuniqueKeys) { // if there is 1 calibration key per camera
augmentedHessianUniqueKeys = SymmetricBlockMatrix(
dims, Matrix(augmentedHessian.selfadjointView()));
} else { // if multiple cameras share a calibration we have to rearrange
// the results of the Schur complement matrix
std::vector<DenseIndex> nonuniqueDims(nrNonuniqueKeys + 1); // this also includes the b term
std::fill(nonuniqueDims.begin(), nonuniqueDims.end() - 1, 6);
nonuniqueDims.back() = 1;
augmentedHessian = SymmetricBlockMatrix(
nonuniqueDims, Matrix(augmentedHessian.selfadjointView()));
// these are the keys that correspond to the blocks in augmentedHessian (output of SchurComplement)
KeyVector nonuniqueKeys;
for (size_t i = 0; i < world_P_body_keys_.size(); i++) {
nonuniqueKeys.push_back(world_P_body_keys_.at(i));
nonuniqueKeys.push_back(body_P_cam_keys_.at(i));
}
// get map from key to location in the new augmented Hessian matrix (the one including only unique keys)
std::map<Key, size_t> keyToSlotMap;
for (size_t k = 0; k < nrUniqueKeys; k++) {
keyToSlotMap[keys_[k]] = k;
}
// initialize matrix to zero
augmentedHessianUniqueKeys = SymmetricBlockMatrix(
dims, Matrix::Zero(6 * nrUniqueKeys + 1, 6 * nrUniqueKeys + 1));
// add contributions for each key: note this loops over the hessian with nonUnique keys (augmentedHessian)
// and populates an Hessian that only includes the unique keys (that is what we want to return)
for (size_t i = 0; i < nrNonuniqueKeys; i++) { // rows
Key key_i = nonuniqueKeys.at(i);
// update information vector
augmentedHessianUniqueKeys.updateOffDiagonalBlock(
keyToSlotMap[key_i], nrUniqueKeys,
augmentedHessian.aboveDiagonalBlock(i, nrNonuniqueKeys));
// update blocks
for (size_t j = i; j < nrNonuniqueKeys; j++) { // cols
Key key_j = nonuniqueKeys.at(j);
if (i == j) {
augmentedHessianUniqueKeys.updateDiagonalBlock(
keyToSlotMap[key_i], augmentedHessian.diagonalBlock(i));
} else { // (i < j)
if (keyToSlotMap[key_i] != keyToSlotMap[key_j]) {
augmentedHessianUniqueKeys.updateOffDiagonalBlock(
keyToSlotMap[key_i], keyToSlotMap[key_j],
augmentedHessian.aboveDiagonalBlock(i, j));
} else {
augmentedHessianUniqueKeys.updateDiagonalBlock(
keyToSlotMap[key_i],
augmentedHessian.aboveDiagonalBlock(i, j)
+ augmentedHessian.aboveDiagonalBlock(i, j).transpose());
}
}
}
}
// update bottom right element of the matrix
augmentedHessianUniqueKeys.updateDiagonalBlock(
nrUniqueKeys, augmentedHessian.diagonalBlock(nrNonuniqueKeys));
}
return boost::make_shared < RegularHessianFactor<DimPose>
> (keys_, augmentedHessianUniqueKeys);
}
/**
* Linearize to Gaussian Factor (possibly adding a damping factor Lambda for LM)
* @param values Values structure which must contain camera poses and extrinsic pose for this factor
* @return a Gaussian factor
*/
boost::shared_ptr<GaussianFactor> linearizeDamped(
const Values& values, const double lambda = 0.0) const {
// depending on flag set on construction we may linearize to different linear factors
switch (params_.linearizationMode) {
case HESSIAN:
return createHessianFactor(values, lambda);
default:
throw std::runtime_error(
"SmartStereoProjectionFactorPP: unknown linearization mode");
}
}
/// linearize
boost::shared_ptr<GaussianFactor> linearize(const Values& values) const
override {
return linearizeDamped(values);
}
private:
/// Serialization function
friend class boost::serialization::access;
template<class ARCHIVE>
void serialize(ARCHIVE& ar, const unsigned int /*version*/) {
ar& BOOST_SERIALIZATION_BASE_OBJECT_NVP(Base);
ar & BOOST_SERIALIZATION_NVP(K_all_);
}
};
// end of class declaration
/// traits
template<>
struct traits<SmartStereoProjectionFactorPP> : public Testable<
SmartStereoProjectionFactorPP> {
};
} // namespace gtsam

File diff suppressed because it is too large Load Diff