version I gave to Jean Gallier

release/4.3a0
Frank Dellaert 2010-03-10 00:12:05 +00:00
parent 266ad062fe
commit 0f78d861ad
2 changed files with 5 additions and 16 deletions

View File

@ -2042,15 +2042,11 @@ q(\omega)=Re^{\Skew{\omega}}p\]
hence the derivative is:
\begin_inset Formula \[
\deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\Skew{\omega}}p\right)=R\deriv{}{\omega}\left(\Skew{\omega}p\right)=RH_{p}\]
\deriv{q(\omega)}{\omega}=R\deriv{}{\omega}\left(e^{\Skew{\omega}}p\right)=R\deriv{}{\omega}\left(\Skew{\omega}p\right)=R\Skew{-p}\]
\end_inset
To calculate
\begin_inset Formula $H_{p}$
\end_inset
we make use of
To show the last equality note that
\begin_inset Formula \[
\Skew{\omega}p=\omega\times p=-p\times\omega=\Skew{-p}\omega\]
@ -2323,16 +2319,9 @@ We would now like to know what an incremental rotation parameterized by
\end_inset
hence the derivative (following the exposition in Section
\begin_inset CommandInset ref
LatexCommand ref
reference "sec:Derivatives-of-Actions"
\end_inset
):
hence the derivative is
\begin_inset Formula \[
\deriv{\hat{q}(\xi)}{\xi}=T\deriv{}{\xi}\left(\xihat\hat{p}\right)=TH_{p}\]
\deriv{\hat{q}(\xi)}{\xi}=T\deriv{}{\xi}\left(\xihat\hat{p}\right)\]
\end_inset
@ -2387,7 +2376,7 @@ By only taking the top three rows, we can write this as a velocity in
\omega\times p+v=-p\times\omega+v=\left[\begin{array}{cc}
-\Skew p & I_{3}\end{array}\right]\left[\begin{array}{c}
\omega\\
v\end{array}\right]=H_{p}\xi\]
v\end{array}\right]\]
\end_inset

Binary file not shown.