Merged in fix/misc_bugfixes_and_cleanup (pull request #136)

Miscellaneous Bugfixes and Cleanup
release/4.3a0
Frank Dellaert 2015-05-14 22:23:52 -07:00
commit 0efdf3aad0
48 changed files with 1303 additions and 914 deletions

View File

@ -98,7 +98,8 @@ if( NOT cmake_build_type_tolower STREQUAL ""
AND NOT cmake_build_type_tolower STREQUAL "release"
AND NOT cmake_build_type_tolower STREQUAL "timing"
AND NOT cmake_build_type_tolower STREQUAL "profiling"
AND NOT cmake_build_type_tolower STREQUAL "relwithdebinfo")
AND NOT cmake_build_type_tolower STREQUAL "relwithdebinfo"
AND NOT cmake_build_type_tolower STREQUAL "minsizerel")
message(FATAL_ERROR "Unknown build type \"${CMAKE_BUILD_TYPE}\". Allowed values are None, Debug, Release, Timing, Profiling, RelWithDebInfo (case-insensitive).")
endif()

View File

@ -131,12 +131,6 @@ else()
set(GTSAM_EXPORTED_TARGETS "${GTSAM_EXPORTED_TARGETS}" PARENT_SCOPE)
endif()
# Set dataset paths
set_property(SOURCE "${CMAKE_CURRENT_SOURCE_DIR}/slam/dataset.cpp"
APPEND PROPERTY COMPILE_DEFINITIONS
"SOURCE_TREE_DATASET_DIR=\"${PROJECT_SOURCE_DIR}/examples/Data\""
"INSTALLED_DATASET_DIR=\"${GTSAM_TOOLBOX_INSTALL_PATH}/gtsam_examples/Data\"")
# Special cases
if(MSVC)
set_property(SOURCE

View File

@ -222,11 +222,7 @@ double norm_2(const Vector& v) {
/* ************************************************************************* */
Vector reciprocal(const Vector &a) {
size_t n = a.size();
Vector b(n);
for( size_t i = 0; i < n; i++ )
b(i) = 1.0/a(i);
return b;
return a.array().inverse();
}
/* ************************************************************************* */

View File

@ -24,13 +24,6 @@ namespace internal {
template<class Class, int N>
struct VectorSpaceImpl {
/// @name Group
/// @{
static Class Compose(const Class& v1, const Class& v2) { return v1+v2;}
static Class Between(const Class& v1, const Class& v2) { return v2-v1;}
static Class Inverse(const Class& m) { return -m;}
/// @}
/// @name Manifold
/// @{
typedef Eigen::Matrix<double, N, 1> TangentVector;
@ -68,21 +61,21 @@ struct VectorSpaceImpl {
return Class(v);
}
static Class Compose(const Class& v1, const Class& v2, ChartJacobian H1,
ChartJacobian H2) {
static Class Compose(const Class& v1, const Class& v2, ChartJacobian H1 = boost::none,
ChartJacobian H2 = boost::none) {
if (H1) *H1 = Jacobian::Identity();
if (H2) *H2 = Jacobian::Identity();
return v1 + v2;
}
static Class Between(const Class& v1, const Class& v2, ChartJacobian H1,
ChartJacobian H2) {
static Class Between(const Class& v1, const Class& v2, ChartJacobian H1 = boost::none,
ChartJacobian H2 = boost::none) {
if (H1) *H1 = - Jacobian::Identity();
if (H2) *H2 = Jacobian::Identity();
return v2 - v1;
}
static Class Inverse(const Class& v, ChartJacobian H) {
static Class Inverse(const Class& v, ChartJacobian H = boost::none) {
if (H) *H = - Jacobian::Identity();
return -v;
}

View File

@ -25,7 +25,7 @@
#define GTSAM_VERSION_STRING "@GTSAM_VERSION_STRING@"
// Paths to example datasets distributed with GTSAM
#define GTSAM_SOURCE_TREE_DATASET_DIR "@CMAKE_SOURCE_DIR@/examples/Data"
#define GTSAM_SOURCE_TREE_DATASET_DIR "@PROJECT_SOURCE_DIR@/examples/Data"
#define GTSAM_INSTALLED_DATASET_DIR "@GTSAM_TOOLBOX_INSTALL_PATH@/gtsam_examples/Data"
// Whether GTSAM is compiled to use quaternions for Rot3 (otherwise uses rotation matrices)

View File

@ -21,7 +21,6 @@
#pragma once
#include <gtsam/base/DerivedValue.h>
#include <gtsam/geometry/Point2.h>
namespace gtsam {

View File

@ -73,7 +73,7 @@ Vector3 OrientedPlane3::error(const gtsam::OrientedPlane3& plane) const {
}
/* ************************************************************************* */
OrientedPlane3 OrientedPlane3::retract(const Vector& v) const {
OrientedPlane3 OrientedPlane3::retract(const Vector3& v) const {
// Retract the Unit3
Vector2 n_v(v(0), v(1));
Unit3 n_retracted = n_.retract(n_v);
@ -83,7 +83,7 @@ OrientedPlane3 OrientedPlane3::retract(const Vector& v) const {
/* ************************************************************************* */
Vector3 OrientedPlane3::localCoordinates(const OrientedPlane3& y) const {
Vector n_local = n_.localCoordinates(y.n_);
Vector2 n_local = n_.localCoordinates(y.n_);
double d_local = d_ - y.d_;
Vector3 e;
e << n_local(0), n_local(1), -d_local;

View File

@ -51,7 +51,7 @@ public:
n_(s), d_(d) {
}
OrientedPlane3(Vector vec) :
OrientedPlane3(const Vector4& vec) :
n_(vec(0), vec(1), vec(2)), d_(vec(3)) {
}
@ -89,7 +89,7 @@ public:
}
/// The retract function
OrientedPlane3 retract(const Vector& v) const;
OrientedPlane3 retract(const Vector3& v) const;
/// The local coordinates function
Vector3 localCoordinates(const OrientedPlane3& s) const;

View File

@ -270,7 +270,10 @@ public:
/// print
void print(const std::string& s = "PinholePose") const {
Base::print(s);
K_->print(s + ".calibration");
if (!K_)
std::cout << "s No calibration given" << std::endl;
else
K_->print(s + ".calibration");
}
/// @}

View File

@ -112,7 +112,9 @@ bool Pose3::equals(const Pose3& pose, double tol) const {
/* ************************************************************************* */
/** Modified from Murray94book version (which assumes w and v normalized?) */
Pose3 Pose3::Expmap(const Vector& xi, OptionalJacobian<6, 6> H) {
if (H) *H = ExpmapDerivative(xi);
if (H) {
*H = ExpmapDerivative(xi);
}
// get angular velocity omega and translational velocity v from twist xi
Point3 w(xi(0), xi(1), xi(2)), v(xi(3), xi(4), xi(5));
@ -254,6 +256,14 @@ Matrix6 Pose3::LogmapDerivative(const Pose3& pose) {
return J;
}
/* ************************************************************************* */
const Point3& Pose3::translation(OptionalJacobian<3, 6> H) const {
if (H) {
*H << Z_3x3, rotation().matrix();
}
return t_;
}
/* ************************************************************************* */
Matrix4 Pose3::matrix() const {
const Matrix3 R = R_.matrix();
@ -280,8 +290,9 @@ Point3 Pose3::transform_from(const Point3& p, OptionalJacobian<3,6> Dpose,
Matrix3 DR = R * skewSymmetric(-p.x(), -p.y(), -p.z());
(*Dpose) << DR, R;
}
if (Dpoint)
if (Dpoint) {
*Dpoint = R_.matrix();
}
return R_ * p + t_;
}
@ -299,17 +310,18 @@ Point3 Pose3::transform_to(const Point3& p, OptionalJacobian<3,6> Dpose,
+wz, 0.0, -wx, 0.0,-1.0, 0.0,
-wy, +wx, 0.0, 0.0, 0.0,-1.0;
}
if (Dpoint)
if (Dpoint) {
*Dpoint = Rt;
}
return q;
}
/* ************************************************************************* */
double Pose3::range(const Point3& point, OptionalJacobian<1, 6> H1,
OptionalJacobian<1, 3> H2) const {
if (!H1 && !H2)
if (!H1 && !H2) {
return transform_to(point).norm();
else {
} else {
Matrix36 D1;
Matrix3 D2;
Point3 d = transform_to(point, H1 ? &D1 : 0, H2 ? &D2 : 0);

View File

@ -223,9 +223,7 @@ public:
}
/// get translation
const Point3& translation() const {
return t_;
}
const Point3& translation(OptionalJacobian<3, 6> H = boost::none) const;
/// get x
double x() const {

View File

@ -119,7 +119,7 @@ Matrix3 Unit3::skew() const {
}
/* ************************************************************************* */
Vector Unit3::error(const Unit3& q, OptionalJacobian<2,2> H) const {
Vector2 Unit3::error(const Unit3& q, OptionalJacobian<2,2> H) const {
// 2D error is equal to B'*q, as B is 3x2 matrix and q is 3x1
Matrix23 Bt = basis().transpose();
Vector2 xi = Bt * q.p_.vector();

View File

@ -108,7 +108,7 @@ public:
}
/// Return unit-norm Vector
Vector unitVector(boost::optional<Matrix&> H = boost::none) const {
Vector3 unitVector(boost::optional<Matrix&> H = boost::none) const {
if (H)
*H = basis();
return (p_.vector());
@ -120,7 +120,7 @@ public:
}
/// Signed, vector-valued error between two directions
Vector error(const Unit3& q, OptionalJacobian<2, 2> H = boost::none) const;
Vector2 error(const Unit3& q, OptionalJacobian<2, 2> H = boost::none) const;
/// Distance between two directions
double distance(const Unit3& q, OptionalJacobian<1, 2> H = boost::none) const;

View File

@ -90,11 +90,11 @@ TEST( CalibratedCamera, project)
/* ************************************************************************* */
TEST( CalibratedCamera, Dproject_to_camera1) {
Point3 pp(155,233,131);
Matrix test1;
CalibratedCamera::project_to_camera(pp, test1);
Matrix test2 = numericalDerivative11<Point2,Point3>(
Matrix actual;
CalibratedCamera::project_to_camera(pp, actual);
Matrix expected_numerical = numericalDerivative11<Point2,Point3>(
boost::bind(CalibratedCamera::project_to_camera, _1, boost::none), pp);
CHECK(assert_equal(test1, test2));
CHECK(assert_equal(expected_numerical, actual));
}
/* ************************************************************************* */

View File

@ -186,6 +186,17 @@ TEST(Pose3, expmaps_galore_full)
EXPECT(assert_equal(xi, Pose3::Logmap(actual),1e-6));
}
/* ************************************************************************* */
// Check translation and its pushforward
TEST(Pose3, translation) {
Matrix actualH;
EXPECT(assert_equal(Point3(3.5, -8.2, 4.2), T.translation(actualH), 1e-8));
Matrix numericalH = numericalDerivative11<Point3, Pose3>(
boost::bind(&Pose3::translation, _1, boost::none), T);
EXPECT(assert_equal(numericalH, actualH, 1e-6));
}
/* ************************************************************************* */
TEST(Pose3, Adjoint_compose_full)
{

View File

@ -23,14 +23,8 @@
namespace gtsam {
/**
* DLT triangulation: See Hartley and Zisserman, 2nd Ed., page 312
* @param projection_matrices Projection matrices (K*P^-1)
* @param measurements 2D measurements
* @param rank_tol SVD rank tolerance
* @return Triangulated Point3
*/
Point3 triangulateDLT(const std::vector<Matrix34>& projection_matrices,
Vector4 triangulateHomogeneousDLT(
const std::vector<Matrix34>& projection_matrices,
const std::vector<Point2>& measurements, double rank_tol) {
// number of cameras
@ -57,7 +51,16 @@ Point3 triangulateDLT(const std::vector<Matrix34>& projection_matrices,
if (rank < 3)
throw(TriangulationUnderconstrainedException());
// Create 3D point from eigenvector
return v;
}
Point3 triangulateDLT(const std::vector<Matrix34>& projection_matrices,
const std::vector<Point2>& measurements, double rank_tol) {
Vector4 v = triangulateHomogeneousDLT(projection_matrices, measurements,
rank_tol);
// Create 3D point from homogeneous coordinates
return Point3(sub((v / v(3)), 0, 3));
}
@ -89,6 +92,5 @@ Point3 optimize(const NonlinearFactorGraph& graph, const Values& values,
return result.at<Point3>(landmarkKey);
}
} // \namespace gtsam

View File

@ -18,7 +18,6 @@
#pragma once
#include <gtsam/slam/TriangulationFactor.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
@ -43,6 +42,17 @@ public:
}
};
/**
* DLT triangulation: See Hartley and Zisserman, 2nd Ed., page 312
* @param projection_matrices Projection matrices (K*P^-1)
* @param measurements 2D measurements
* @param rank_tol SVD rank tolerance
* @return Triangulated point, in homogeneous coordinates
*/
GTSAM_EXPORT Vector4 triangulateHomogeneousDLT(
const std::vector<Matrix34>& projection_matrices,
const std::vector<Point2>& measurements, double rank_tol = 1e-9);
/**
* DLT triangulation: See Hartley and Zisserman, 2nd Ed., page 312
* @param projection_matrices Projection matrices (K*P^-1)
@ -52,7 +62,7 @@ public:
*/
GTSAM_EXPORT Point3 triangulateDLT(
const std::vector<Matrix34>& projection_matrices,
const std::vector<Point2>& measurements, double rank_tol);
const std::vector<Point2>& measurements, double rank_tol = 1e-9);
///
/**
@ -164,6 +174,25 @@ Point3 triangulateNonlinear(
return optimize(graph, values, Symbol('p', 0));
}
/**
* Create a 3*4 camera projection matrix from calibration and pose.
* Functor for partial application on calibration
* @param pose The camera pose
* @param cal The calibration
* @return Returns a Matrix34
*/
template<class CALIBRATION>
struct CameraProjectionMatrix {
CameraProjectionMatrix(const CALIBRATION& calibration) :
K_(calibration.K()) {
}
Matrix34 operator()(const Pose3& pose) const {
return K_ * (pose.inverse().matrix()).block<3, 4>(0, 0);
}
private:
const Matrix3 K_;
};
/**
* Function to triangulate 3D landmark point from an arbitrary number
* of poses (at least 2) using the DLT. The function checks that the
@ -188,10 +217,10 @@ Point3 triangulatePoint3(const std::vector<Pose3>& poses,
// construct projection matrices from poses & calibration
std::vector<Matrix34> projection_matrices;
BOOST_FOREACH(const Pose3& pose, poses) {
projection_matrices.push_back(
sharedCal->K() * (pose.inverse().matrix()).block<3,4>(0,0));
}
CameraProjectionMatrix<CALIBRATION> createP(*sharedCal); // partially apply
BOOST_FOREACH(const Pose3& pose, poses)
projection_matrices.push_back(createP(pose));
// Triangulate linearly
Point3 point = triangulateDLT(projection_matrices, measurements, rank_tol);
@ -204,7 +233,7 @@ Point3 triangulatePoint3(const std::vector<Pose3>& poses,
BOOST_FOREACH(const Pose3& pose, poses) {
const Point3& p_local = pose.transform_to(point);
if (p_local.z() <= 0)
throw(TriangulationCheiralityException());
throw(TriangulationCheiralityException());
}
#endif
@ -230,7 +259,7 @@ Point3 triangulatePoint3(
bool optimize = false) {
size_t m = cameras.size();
assert(measurements.size()==m);
assert(measurements.size() == m);
if (m < 2)
throw(TriangulationUnderconstrainedException());
@ -238,10 +267,10 @@ Point3 triangulatePoint3(
// construct projection matrices from poses & calibration
typedef PinholeCamera<CALIBRATION> Camera;
std::vector<Matrix34> projection_matrices;
BOOST_FOREACH(const Camera& camera, cameras) {
Matrix P_ = (camera.pose().inverse().matrix());
projection_matrices.push_back(camera.calibration().K()* (P_.block<3,4>(0,0)) );
}
BOOST_FOREACH(const Camera& camera, cameras)
projection_matrices.push_back(
CameraProjectionMatrix<CALIBRATION>(camera.calibration())(
camera.pose()));
Point3 point = triangulateDLT(projection_matrices, measurements, rank_tol);
// The n refine using non-linear optimization
@ -253,7 +282,7 @@ Point3 triangulatePoint3(
BOOST_FOREACH(const Camera& camera, cameras) {
const Point3& p_local = camera.pose().transform_to(point);
if (p_local.z() <= 0)
throw(TriangulationCheiralityException());
throw(TriangulationCheiralityException());
}
#endif

View File

@ -365,32 +365,50 @@ void JacobianFactor::print(const string& s,
/* ************************************************************************* */
// Check if two linear factors are equal
bool JacobianFactor::equals(const GaussianFactor& f_, double tol) const {
if (!dynamic_cast<const JacobianFactor*>(&f_))
static const bool verbose = false;
if (!dynamic_cast<const JacobianFactor*>(&f_)) {
if (verbose)
cout << "JacobianFactor::equals: Incorrect type" << endl;
return false;
else {
} else {
const JacobianFactor& f(static_cast<const JacobianFactor&>(f_));
// Check keys
if (keys() != f.keys())
if (keys() != f.keys()) {
if (verbose)
cout << "JacobianFactor::equals: keys do not match" << endl;
return false;
}
// Check noise model
if ((model_ && !f.model_) || (!model_ && f.model_))
if ((model_ && !f.model_) || (!model_ && f.model_)) {
if (verbose)
cout << "JacobianFactor::equals: noise model mismatch" << endl;
return false;
if (model_ && f.model_ && !model_->equals(*f.model_, tol))
}
if (model_ && f.model_ && !model_->equals(*f.model_, tol)) {
if (verbose)
cout << "JacobianFactor::equals: noise modesl are not equal" << endl;
return false;
}
// Check matrix sizes
if (!(Ab_.rows() == f.Ab_.rows() && Ab_.cols() == f.Ab_.cols()))
if (!(Ab_.rows() == f.Ab_.rows() && Ab_.cols() == f.Ab_.cols())) {
if (verbose)
cout << "JacobianFactor::equals: augmented size mismatch" << endl;
return false;
}
// Check matrix contents
constABlock Ab1(Ab_.range(0, Ab_.nBlocks()));
constABlock Ab2(f.Ab_.range(0, f.Ab_.nBlocks()));
for (size_t row = 0; row < (size_t) Ab1.rows(); ++row)
if (!equal_with_abs_tol(Ab1.row(row), Ab2.row(row), tol)
&& !equal_with_abs_tol(-Ab1.row(row), Ab2.row(row), tol))
&& !equal_with_abs_tol(-Ab1.row(row), Ab2.row(row), tol)) {
if (verbose)
cout << "JacobianFactor::equals: matrix mismatch at row " << row << endl;
return false;
}
return true;
}

View File

@ -28,6 +28,7 @@
#include <iostream>
#include <typeinfo>
#include <stdexcept>
#include <cmath>
using namespace std;
@ -70,6 +71,11 @@ boost::optional<Vector> checkIfDiagonal(const Matrix M) {
}
}
/* ************************************************************************* */
Vector Base::sigmas() const {
throw("Base::sigmas: sigmas() not implemented for this noise model");
}
/* ************************************************************************* */
Gaussian::shared_ptr Gaussian::SqrtInformation(const Matrix& R, bool smart) {
size_t m = R.rows(), n = R.cols();
@ -79,24 +85,25 @@ Gaussian::shared_ptr Gaussian::SqrtInformation(const Matrix& R, bool smart) {
if (smart)
diagonal = checkIfDiagonal(R);
if (diagonal)
return Diagonal::Sigmas(reciprocal(*diagonal), true);
return Diagonal::Sigmas(diagonal->array().inverse(), true);
else
return shared_ptr(new Gaussian(R.rows(), R));
}
/* ************************************************************************* */
Gaussian::shared_ptr Gaussian::Information(const Matrix& M, bool smart) {
size_t m = M.rows(), n = M.cols();
Gaussian::shared_ptr Gaussian::Information(const Matrix& information, bool smart) {
size_t m = information.rows(), n = information.cols();
if (m != n)
throw invalid_argument("Gaussian::Information: R not square");
boost::optional<Vector> diagonal = boost::none;
if (smart)
diagonal = checkIfDiagonal(M);
diagonal = checkIfDiagonal(information);
if (diagonal)
return Diagonal::Precisions(*diagonal, true);
else {
Matrix R = RtR(M);
return shared_ptr(new Gaussian(R.rows(), R));
Eigen::LLT<Matrix> llt(information);
Matrix R = llt.matrixU();
return shared_ptr(new Gaussian(n, R));
}
}
@ -111,13 +118,15 @@ Gaussian::shared_ptr Gaussian::Covariance(const Matrix& covariance,
variances = checkIfDiagonal(covariance);
if (variances)
return Diagonal::Variances(*variances, true);
else
return shared_ptr(new Gaussian(n, inverse_square_root(covariance)));
else {
// TODO: can we do this more efficiently and still get an upper triangular nmatrix??
return Information(covariance.inverse(), false);
}
}
/* ************************************************************************* */
void Gaussian::print(const string& name) const {
gtsam::print(thisR(), "Gaussian");
gtsam::print(thisR(), name + "Gaussian");
}
/* ************************************************************************* */
@ -129,6 +138,12 @@ bool Gaussian::equals(const Base& expected, double tol) const {
return equal_with_abs_tol(R(), p->R(), sqrt(tol));
}
/* ************************************************************************* */
Vector Gaussian::sigmas() const {
// TODO(frank): can this be done faster?
return Vector((thisR().transpose() * thisR()).inverse().diagonal()).cwiseSqrt();
}
/* ************************************************************************* */
Vector Gaussian::whiten(const Vector& v) const {
return thisR() * v;
@ -221,9 +236,11 @@ Diagonal::Diagonal() :
}
/* ************************************************************************* */
Diagonal::Diagonal(const Vector& sigmas) :
Gaussian(sigmas.size()), sigmas_(sigmas), invsigmas_(reciprocal(sigmas)), precisions_(
emul(invsigmas_, invsigmas_)) {
Diagonal::Diagonal(const Vector& sigmas)
: Gaussian(sigmas.size()),
sigmas_(sigmas),
invsigmas_(sigmas.array().inverse()),
precisions_(invsigmas_.array().square()) {
}
/* ************************************************************************* */
@ -262,12 +279,12 @@ void Diagonal::print(const string& name) const {
/* ************************************************************************* */
Vector Diagonal::whiten(const Vector& v) const {
return emul(v, invsigmas());
return v.cwiseProduct(invsigmas_);
}
/* ************************************************************************* */
Vector Diagonal::unwhiten(const Vector& v) const {
return emul(v, sigmas_);
return v.cwiseProduct(sigmas_);
}
/* ************************************************************************* */
@ -342,7 +359,7 @@ Vector Constrained::whiten(const Vector& v) const {
assert (b.size()==a.size());
Vector c(n);
for( size_t i = 0; i < n; i++ ) {
const double& ai = a(i), &bi = b(i);
const double& ai = a(i), bi = b(i);
c(i) = (bi==0.0) ? ai : ai/bi; // NOTE: not ediv_()
}
return c;
@ -404,8 +421,8 @@ SharedDiagonal Constrained::QR(Matrix& Ab) const {
list<Triple> Rd;
Vector pseudo(m); // allocate storage for pseudo-inverse
Vector invsigmas = reciprocal(sigmas_);
Vector weights = emul(invsigmas,invsigmas); // calculate weights once
Vector invsigmas = sigmas_.array().inverse();
Vector weights = invsigmas.array().square(); // calculate weights once
// We loop over all columns, because the columns that can be eliminated
// are not necessarily contiguous. For each one, estimate the corresponding
@ -542,16 +559,6 @@ Vector Base::weight(const Vector &error) const {
return w;
}
/** square root version of the weight function */
Vector Base::sqrtWeight(const Vector &error) const {
const size_t n = error.rows();
Vector w(n);
for ( size_t i = 0 ; i < n ; ++i )
w(i) = sqrtWeight(error(i));
return w;
}
/** The following three functions reweight block matrices and a vector
* according to their weight implementation */
@ -560,8 +567,7 @@ void Base::reweight(Vector& error) const {
const double w = sqrtWeight(error.norm());
error *= w;
} else {
const Vector w = sqrtWeight(error);
error.array() *= w.array();
error.array() *= weight(error).cwiseSqrt().array();
}
}
@ -579,7 +585,7 @@ void Base::reweight(vector<Matrix> &A, Vector &error) const {
BOOST_FOREACH(Matrix& Aj, A) {
vector_scale_inplace(W,Aj);
}
error = emul(W, error);
error = W.cwiseProduct(error);
}
}
@ -593,7 +599,7 @@ void Base::reweight(Matrix &A, Vector &error) const {
else {
const Vector W = sqrtWeight(error);
vector_scale_inplace(W,A);
error = emul(W, error);
error = W.cwiseProduct(error);
}
}
@ -609,7 +615,7 @@ void Base::reweight(Matrix &A1, Matrix &A2, Vector &error) const {
const Vector W = sqrtWeight(error);
vector_scale_inplace(W,A1);
vector_scale_inplace(W,A2);
error = emul(W, error);
error = W.cwiseProduct(error);
}
}
@ -627,7 +633,7 @@ void Base::reweight(Matrix &A1, Matrix &A2, Matrix &A3, Vector &error) const {
vector_scale_inplace(W,A1);
vector_scale_inplace(W,A2);
vector_scale_inplace(W,A3);
error = emul(W, error);
error = W.cwiseProduct(error);
}
}
@ -641,7 +647,7 @@ void Null::print(const std::string &s="") const
Null::shared_ptr Null::Create()
{ return shared_ptr(new Null()); }
Fair::Fair(const double c, const ReweightScheme reweight)
Fair::Fair(double c, const ReweightScheme reweight)
: Base(reweight), c_(c) {
if ( c_ <= 0 ) {
cout << "mEstimator Fair takes only positive double in constructor. forced to 1.0" << endl;
@ -653,26 +659,26 @@ Fair::Fair(const double c, const ReweightScheme reweight)
// Fair
/* ************************************************************************* */
double Fair::weight(const double &error) const
double Fair::weight(double error) const
{ return 1.0 / (1.0 + fabs(error)/c_); }
void Fair::print(const std::string &s="") const
{ cout << s << "fair (" << c_ << ")" << endl; }
bool Fair::equals(const Base &expected, const double tol) const {
bool Fair::equals(const Base &expected, double tol) const {
const Fair* p = dynamic_cast<const Fair*> (&expected);
if (p == NULL) return false;
return fabs(c_ - p->c_ ) < tol;
}
Fair::shared_ptr Fair::Create(const double c, const ReweightScheme reweight)
Fair::shared_ptr Fair::Create(double c, const ReweightScheme reweight)
{ return shared_ptr(new Fair(c, reweight)); }
/* ************************************************************************* */
// Huber
/* ************************************************************************* */
Huber::Huber(const double k, const ReweightScheme reweight)
Huber::Huber(double k, const ReweightScheme reweight)
: Base(reweight), k_(k) {
if ( k_ <= 0 ) {
cout << "mEstimator Huber takes only positive double in constructor. forced to 1.0" << endl;
@ -680,7 +686,7 @@ Huber::Huber(const double k, const ReweightScheme reweight)
}
}
double Huber::weight(const double &error) const {
double Huber::weight(double error) const {
return (error < k_) ? (1.0) : (k_ / fabs(error));
}
@ -688,13 +694,13 @@ void Huber::print(const std::string &s="") const {
cout << s << "huber (" << k_ << ")" << endl;
}
bool Huber::equals(const Base &expected, const double tol) const {
bool Huber::equals(const Base &expected, double tol) const {
const Huber* p = dynamic_cast<const Huber*>(&expected);
if (p == NULL) return false;
return fabs(k_ - p->k_) < tol;
}
Huber::shared_ptr Huber::Create(const double c, const ReweightScheme reweight) {
Huber::shared_ptr Huber::Create(double c, const ReweightScheme reweight) {
return shared_ptr(new Huber(c, reweight));
}
@ -702,7 +708,7 @@ Huber::shared_ptr Huber::Create(const double c, const ReweightScheme reweight) {
// Cauchy
/* ************************************************************************* */
Cauchy::Cauchy(const double k, const ReweightScheme reweight)
Cauchy::Cauchy(double k, const ReweightScheme reweight)
: Base(reweight), k_(k) {
if ( k_ <= 0 ) {
cout << "mEstimator Cauchy takes only positive double in constructor. forced to 1.0" << endl;
@ -710,7 +716,7 @@ Cauchy::Cauchy(const double k, const ReweightScheme reweight)
}
}
double Cauchy::weight(const double &error) const {
double Cauchy::weight(double error) const {
return k_*k_ / (k_*k_ + error*error);
}
@ -718,24 +724,24 @@ void Cauchy::print(const std::string &s="") const {
cout << s << "cauchy (" << k_ << ")" << endl;
}
bool Cauchy::equals(const Base &expected, const double tol) const {
bool Cauchy::equals(const Base &expected, double tol) const {
const Cauchy* p = dynamic_cast<const Cauchy*>(&expected);
if (p == NULL) return false;
return fabs(k_ - p->k_) < tol;
}
Cauchy::shared_ptr Cauchy::Create(const double c, const ReweightScheme reweight) {
Cauchy::shared_ptr Cauchy::Create(double c, const ReweightScheme reweight) {
return shared_ptr(new Cauchy(c, reweight));
}
/* ************************************************************************* */
// Tukey
/* ************************************************************************* */
Tukey::Tukey(const double c, const ReweightScheme reweight)
Tukey::Tukey(double c, const ReweightScheme reweight)
: Base(reweight), c_(c) {
}
double Tukey::weight(const double &error) const {
double Tukey::weight(double error) const {
if (fabs(error) <= c_) {
double xc2 = (error/c_)*(error/c_);
double one_xc22 = (1.0-xc2)*(1.0-xc2);
@ -748,24 +754,24 @@ void Tukey::print(const std::string &s="") const {
std::cout << s << ": Tukey (" << c_ << ")" << std::endl;
}
bool Tukey::equals(const Base &expected, const double tol) const {
bool Tukey::equals(const Base &expected, double tol) const {
const Tukey* p = dynamic_cast<const Tukey*>(&expected);
if (p == NULL) return false;
return fabs(c_ - p->c_) < tol;
}
Tukey::shared_ptr Tukey::Create(const double c, const ReweightScheme reweight) {
Tukey::shared_ptr Tukey::Create(double c, const ReweightScheme reweight) {
return shared_ptr(new Tukey(c, reweight));
}
/* ************************************************************************* */
// Welsh
/* ************************************************************************* */
Welsh::Welsh(const double c, const ReweightScheme reweight)
Welsh::Welsh(double c, const ReweightScheme reweight)
: Base(reweight), c_(c) {
}
double Welsh::weight(const double &error) const {
double Welsh::weight(double error) const {
double xc2 = (error/c_)*(error/c_);
return std::exp(-xc2);
}
@ -774,13 +780,13 @@ void Welsh::print(const std::string &s="") const {
std::cout << s << ": Welsh (" << c_ << ")" << std::endl;
}
bool Welsh::equals(const Base &expected, const double tol) const {
bool Welsh::equals(const Base &expected, double tol) const {
const Welsh* p = dynamic_cast<const Welsh*>(&expected);
if (p == NULL) return false;
return fabs(c_ - p->c_) < tol;
}
Welsh::shared_ptr Welsh::Create(const double c, const ReweightScheme reweight) {
Welsh::shared_ptr Welsh::Create(double c, const ReweightScheme reweight) {
return shared_ptr(new Welsh(c, reweight));
}

View File

@ -26,7 +26,6 @@
#include <boost/serialization/singleton.hpp>
#include <boost/serialization/shared_ptr.hpp>
#include <boost/serialization/optional.hpp>
#include <cmath>
namespace gtsam {
@ -59,7 +58,7 @@ namespace gtsam {
public:
/** primary constructor @param dim is the dimension of the model */
/// primary constructor @param dim is the dimension of the model
Base(size_t dim = 1):dim_(dim) {}
virtual ~Base() {}
@ -75,14 +74,13 @@ namespace gtsam {
virtual bool equals(const Base& expected, double tol=1e-9) const = 0;
/**
* Whiten an error vector.
*/
/// Calculate standard deviations
virtual Vector sigmas() const;
/// Whiten an error vector.
virtual Vector whiten(const Vector& v) const = 0;
/**
* Unwhiten an error vector.
*/
/// Unwhiten an error vector.
virtual Vector unwhiten(const Vector& v) const = 0;
virtual double distance(const Vector& v) const = 0;
@ -189,6 +187,7 @@ namespace gtsam {
virtual void print(const std::string& name) const;
virtual bool equals(const Base& expected, double tol=1e-9) const;
virtual Vector sigmas() const;
virtual Vector whiten(const Vector& v) const;
virtual Vector unwhiten(const Vector& v) const;
@ -220,9 +219,9 @@ namespace gtsam {
/**
* Whiten a system, in place as well
*/
virtual void WhitenSystem(std::vector<Matrix>& A, Vector& b) const ;
virtual void WhitenSystem(Matrix& A, Vector& b) const ;
virtual void WhitenSystem(Matrix& A1, Matrix& A2, Vector& b) const ;
virtual void WhitenSystem(std::vector<Matrix>& A, Vector& b) const;
virtual void WhitenSystem(Matrix& A, Vector& b) const;
virtual void WhitenSystem(Matrix& A1, Matrix& A2, Vector& b) const;
virtual void WhitenSystem(Matrix& A1, Matrix& A2, Matrix& A3, Vector& b) const;
/**
@ -234,11 +233,15 @@ namespace gtsam {
*/
virtual boost::shared_ptr<Diagonal> QR(Matrix& Ab) const;
/**
* Return R itself, but note that Whiten(H) is cheaper than R*H
*/
/// Return R itself, but note that Whiten(H) is cheaper than R*H
virtual Matrix R() const { return thisR();}
/// Compute information matrix
virtual Matrix information() const { return thisR().transpose() * thisR(); }
/// Compute covariance matrix
virtual Matrix covariance() const { return information().inverse(); }
private:
/** Serialization function */
friend class boost::serialization::access;
@ -303,6 +306,7 @@ namespace gtsam {
}
virtual void print(const std::string& name) const;
virtual Vector sigmas() const { return sigmas_; }
virtual Vector whiten(const Vector& v) const;
virtual Vector unwhiten(const Vector& v) const;
virtual Matrix Whiten(const Matrix& H) const;
@ -312,7 +316,6 @@ namespace gtsam {
/**
* Return standard deviations (sqrt of diagonal)
*/
inline const Vector& sigmas() const { return sigmas_; }
inline double sigma(size_t i) const { return sigmas_(i); }
/**
@ -629,20 +632,23 @@ namespace gtsam {
virtual ~Base() {}
/// robust error function to implement
virtual double weight(const double &error) const = 0;
virtual double weight(double error) const = 0;
virtual void print(const std::string &s) const = 0;
virtual bool equals(const Base& expected, const double tol=1e-8) const = 0;
virtual bool equals(const Base& expected, double tol=1e-8) const = 0;
inline double sqrtWeight(const double &error) const
{ return std::sqrt(weight(error)); }
double sqrtWeight(double error) const {
return std::sqrt(weight(error));
}
/** produce a weight vector according to an error vector and the implemented
* robust function */
Vector weight(const Vector &error) const;
/** square root version of the weight function */
Vector sqrtWeight(const Vector &error) const;
Vector sqrtWeight(const Vector &error) const {
return weight(error).cwiseSqrt();
}
/** reweight block matrices and a vector according to their weight implementation */
void reweight(Vector &error) const;
@ -667,9 +673,9 @@ namespace gtsam {
Null(const ReweightScheme reweight = Block) : Base(reweight) {}
virtual ~Null() {}
virtual double weight(const double& /*error*/) const { return 1.0; }
virtual double weight(double /*error*/) const { return 1.0; }
virtual void print(const std::string &s) const;
virtual bool equals(const Base& /*expected*/, const double /*tol*/) const { return true; }
virtual bool equals(const Base& /*expected*/, double /*tol*/) const { return true; }
static shared_ptr Create() ;
private:
@ -686,12 +692,12 @@ namespace gtsam {
public:
typedef boost::shared_ptr<Fair> shared_ptr;
Fair(const double c = 1.3998, const ReweightScheme reweight = Block);
Fair(double c = 1.3998, const ReweightScheme reweight = Block);
virtual ~Fair() {}
virtual double weight(const double &error) const ;
virtual void print(const std::string &s) const ;
virtual bool equals(const Base& expected, const double tol=1e-8) const ;
static shared_ptr Create(const double c, const ReweightScheme reweight = Block) ;
virtual double weight(double error) const;
virtual void print(const std::string &s) const;
virtual bool equals(const Base& expected, double tol=1e-8) const;
static shared_ptr Create(double c, const ReweightScheme reweight = Block) ;
protected:
double c_;
@ -712,11 +718,11 @@ namespace gtsam {
typedef boost::shared_ptr<Huber> shared_ptr;
virtual ~Huber() {}
Huber(const double k = 1.345, const ReweightScheme reweight = Block);
virtual double weight(const double &error) const ;
virtual void print(const std::string &s) const ;
virtual bool equals(const Base& expected, const double tol=1e-8) const ;
static shared_ptr Create(const double k, const ReweightScheme reweight = Block) ;
Huber(double k = 1.345, const ReweightScheme reweight = Block);
virtual double weight(double error) const;
virtual void print(const std::string &s) const;
virtual bool equals(const Base& expected, double tol=1e-8) const;
static shared_ptr Create(double k, const ReweightScheme reweight = Block) ;
protected:
double k_;
@ -741,11 +747,11 @@ namespace gtsam {
typedef boost::shared_ptr<Cauchy> shared_ptr;
virtual ~Cauchy() {}
Cauchy(const double k = 0.1, const ReweightScheme reweight = Block);
virtual double weight(const double &error) const ;
virtual void print(const std::string &s) const ;
virtual bool equals(const Base& expected, const double tol=1e-8) const ;
static shared_ptr Create(const double k, const ReweightScheme reweight = Block) ;
Cauchy(double k = 0.1, const ReweightScheme reweight = Block);
virtual double weight(double error) const;
virtual void print(const std::string &s) const;
virtual bool equals(const Base& expected, double tol=1e-8) const;
static shared_ptr Create(double k, const ReweightScheme reweight = Block) ;
protected:
double k_;
@ -765,12 +771,12 @@ namespace gtsam {
public:
typedef boost::shared_ptr<Tukey> shared_ptr;
Tukey(const double c = 4.6851, const ReweightScheme reweight = Block);
Tukey(double c = 4.6851, const ReweightScheme reweight = Block);
virtual ~Tukey() {}
virtual double weight(const double &error) const ;
virtual void print(const std::string &s) const ;
virtual bool equals(const Base& expected, const double tol=1e-8) const ;
static shared_ptr Create(const double k, const ReweightScheme reweight = Block) ;
virtual double weight(double error) const;
virtual void print(const std::string &s) const;
virtual bool equals(const Base& expected, double tol=1e-8) const;
static shared_ptr Create(double k, const ReweightScheme reweight = Block) ;
protected:
double c_;
@ -790,12 +796,12 @@ namespace gtsam {
public:
typedef boost::shared_ptr<Welsh> shared_ptr;
Welsh(const double c = 2.9846, const ReweightScheme reweight = Block);
Welsh(double c = 2.9846, const ReweightScheme reweight = Block);
virtual ~Welsh() {}
virtual double weight(const double &error) const ;
virtual void print(const std::string &s) const ;
virtual bool equals(const Base& expected, const double tol=1e-8) const ;
static shared_ptr Create(const double k, const ReweightScheme reweight = Block) ;
virtual double weight(double error) const;
virtual void print(const std::string &s) const;
virtual bool equals(const Base& expected, double tol=1e-8) const;
static shared_ptr Create(double k, const ReweightScheme reweight = Block) ;
protected:
double c_;

View File

@ -70,7 +70,7 @@ namespace gtsam {
Subgraph(const std::vector<size_t> &indices) ;
inline const Edges& edges() const { return edges_; }
inline const size_t size() const { return edges_.size(); }
inline size_t size() const { return edges_.size(); }
EdgeIndices edgeIndices() const;
iterator begin() { return edges_.begin(); }

View File

@ -33,15 +33,16 @@ using namespace gtsam;
using namespace noiseModel;
using namespace boost::assign;
static double sigma = 2, s_1=1.0/sigma, var = sigma*sigma, prc = 1.0/var;
static Matrix R = (Matrix(3, 3) <<
static const double kSigma = 2, s_1=1.0/kSigma, kVariance = kSigma*kSigma, prc = 1.0/kVariance;
static const Matrix R = (Matrix(3, 3) <<
s_1, 0.0, 0.0,
0.0, s_1, 0.0,
0.0, 0.0, s_1).finished();
static Matrix Sigma = (Matrix(3, 3) <<
var, 0.0, 0.0,
0.0, var, 0.0,
0.0, 0.0, var).finished();
static const Matrix kCovariance = (Matrix(3, 3) <<
kVariance, 0.0, 0.0,
0.0, kVariance, 0.0,
0.0, 0.0, kVariance).finished();
static const Vector3 kSigmas(kSigma, kSigma, kSigma);
//static double inf = numeric_limits<double>::infinity();
@ -53,15 +54,19 @@ TEST(NoiseModel, constructors)
// Construct noise models
vector<Gaussian::shared_ptr> m;
m.push_back(Gaussian::SqrtInformation(R));
m.push_back(Gaussian::Covariance(Sigma));
//m.push_back(Gaussian::Information(Q));
m.push_back(Diagonal::Sigmas((Vector(3) << sigma, sigma, sigma).finished()));
m.push_back(Diagonal::Variances((Vector(3) << var, var, var).finished()));
m.push_back(Diagonal::Precisions((Vector(3) << prc, prc, prc).finished()));
m.push_back(Isotropic::Sigma(3, sigma));
m.push_back(Isotropic::Variance(3, var));
m.push_back(Isotropic::Precision(3, prc));
m.push_back(Gaussian::SqrtInformation(R,false));
m.push_back(Gaussian::Covariance(kCovariance,false));
m.push_back(Gaussian::Information(kCovariance.inverse(),false));
m.push_back(Diagonal::Sigmas(kSigmas,false));
m.push_back(Diagonal::Variances((Vector(3) << kVariance, kVariance, kVariance).finished(),false));
m.push_back(Diagonal::Precisions((Vector(3) << prc, prc, prc).finished(),false));
m.push_back(Isotropic::Sigma(3, kSigma,false));
m.push_back(Isotropic::Variance(3, kVariance,false));
m.push_back(Isotropic::Precision(3, prc,false));
// test kSigmas
BOOST_FOREACH(Gaussian::shared_ptr mi, m)
EXPECT(assert_equal(kSigmas,mi->sigmas()));
// test whiten
BOOST_FOREACH(Gaussian::shared_ptr mi, m)
@ -117,9 +122,9 @@ TEST(NoiseModel, equals)
{
Gaussian::shared_ptr g1 = Gaussian::SqrtInformation(R),
g2 = Gaussian::SqrtInformation(eye(3,3));
Diagonal::shared_ptr d1 = Diagonal::Sigmas((Vector(3) << sigma, sigma, sigma).finished()),
Diagonal::shared_ptr d1 = Diagonal::Sigmas((Vector(3) << kSigma, kSigma, kSigma).finished()),
d2 = Diagonal::Sigmas(Vector3(0.1, 0.2, 0.3));
Isotropic::shared_ptr i1 = Isotropic::Sigma(3, sigma),
Isotropic::shared_ptr i1 = Isotropic::Sigma(3, kSigma),
i2 = Isotropic::Sigma(3, 0.7);
EXPECT(assert_equal(*g1,*g1));
@ -155,7 +160,7 @@ TEST(NoiseModel, ConstrainedConstructors )
Constrained::shared_ptr actual;
size_t d = 3;
double m = 100.0;
Vector sigmas = (Vector(3) << sigma, 0.0, 0.0).finished();
Vector sigmas = (Vector(3) << kSigma, 0.0, 0.0).finished();
Vector mu = Vector3(200.0, 300.0, 400.0);
actual = Constrained::All(d);
// TODO: why should this be a thousand ??? Dummy variable?
@ -182,7 +187,7 @@ TEST(NoiseModel, ConstrainedMixed )
{
Vector feasible = Vector3(1.0, 0.0, 1.0),
infeasible = Vector3(1.0, 1.0, 1.0);
Diagonal::shared_ptr d = Constrained::MixedSigmas((Vector(3) << sigma, 0.0, sigma).finished());
Diagonal::shared_ptr d = Constrained::MixedSigmas((Vector(3) << kSigma, 0.0, kSigma).finished());
// NOTE: we catch constrained variables elsewhere, so whitening does nothing
EXPECT(assert_equal(Vector3(0.5, 1.0, 0.5),d->whiten(infeasible)));
EXPECT(assert_equal(Vector3(0.5, 0.0, 0.5),d->whiten(feasible)));
@ -357,6 +362,44 @@ TEST(NoiseModel, robustNoise)
DOUBLES_EQUAL(sqrt(k/100.0)*1000.0, A(1,1), 1e-8);
}
/* ************************************************************************* */
#define TEST_GAUSSIAN(gaussian)\
EQUALITY(info, gaussian->information());\
EQUALITY(cov, gaussian->covariance());\
EXPECT(assert_equal(white, gaussian->whiten(e)));\
EXPECT(assert_equal(e, gaussian->unwhiten(white)));\
EXPECT_DOUBLES_EQUAL(251, gaussian->distance(e), 1e-9);\
Matrix A = R.inverse(); Vector b = e;\
gaussian->WhitenSystem(A, b);\
EXPECT(assert_equal(I, A));\
EXPECT(assert_equal(white, b));
TEST(NoiseModel, NonDiagonalGaussian)
{
Matrix3 R;
R << 6, 5, 4, 0, 3, 2, 0, 0, 1;
const Matrix3 info = R.transpose() * R;
const Matrix3 cov = info.inverse();
const Vector3 e(1, 1, 1), white = R * e;
Matrix I = Matrix3::Identity();
{
SharedGaussian gaussian = Gaussian::SqrtInformation(R);
TEST_GAUSSIAN(gaussian);
}
{
SharedGaussian gaussian = Gaussian::Information(info);
TEST_GAUSSIAN(gaussian);
}
{
SharedGaussian gaussian = Gaussian::Covariance(cov);
TEST_GAUSSIAN(gaussian);
}
}
/* ************************************************************************* */
int main() { TestResult tr; return TestRegistry::runAllTests(tr); }
/* ************************************************************************* */

View File

@ -17,8 +17,10 @@
#pragma once
#include <gtsam/base/Matrix.h>
#include <gtsam/base/Vector.h>
#include <gtsam/base/VectorSpace.h>
#include <boost/serialization/nvp.hpp>
#include <gtsam/geometry/Pose3.h>
/*
* NOTES:
@ -131,8 +133,8 @@ public:
/// print with optional string
void print(const std::string& s = "") const {
// explicit printing for now.
std::cout << s + ".biasAcc [" << biasAcc_.transpose() << "]" << std::endl;
std::cout << s + ".biasGyro [" << biasGyro_.transpose() << "]" << std::endl;
std::cout << s + ".Acc [" << biasAcc_.transpose() << "]" << std::endl;
std::cout << s + ".Gyro [" << biasGyro_.transpose() << "]" << std::endl;
}
/** equality up to tolerance */

View File

@ -44,7 +44,6 @@ ImuFactor::PreintegratedMeasurements::PreintegratedMeasurements(
//------------------------------------------------------------------------------
void ImuFactor::PreintegratedMeasurements::print(const string& s) const {
PreintegrationBase::print(s);
cout << " preintMeasCov = \n [ " << preintMeasCov_ << " ]" << endl;
}
//------------------------------------------------------------------------------
@ -75,8 +74,7 @@ void ImuFactor::PreintegratedMeasurements::integrateMeasurement(
const Rot3 Rincr = Rot3::Expmap(integratedOmega, D_Rincr_integratedOmega); // rotation increment computed from the current rotation rate measurement
// Update Jacobians
updatePreintegratedJacobians(correctedAcc, D_Rincr_integratedOmega, Rincr,
deltaT);
updatePreintegratedJacobians(correctedAcc, D_Rincr_integratedOmega, Rincr, deltaT);
// Update preintegrated measurements (also get Jacobian)
const Matrix3 R_i = deltaRij(); // store this, which is useful to compute G_test
@ -89,8 +87,8 @@ void ImuFactor::PreintegratedMeasurements::integrateMeasurement(
// preintMeasCov = F * preintMeasCov * F.transpose() + G * (1/deltaT) * measurementCovariance * G.transpose();
// NOTE 1: (1/deltaT) allows to pass from continuous time noise to discrete time noise
// measurementCovariance_discrete = measurementCovariance_contTime * (1/deltaT)
// NOTE 2: the computation of G * (1/deltaT) * measurementCovariance * G.transpose() is done blockwise,
// as G and measurementCovariance are blockdiagonal matrices
// NOTE 2: the computation of G * (1/deltaT) * measurementCovariance * G.transpose() is done block-wise,
// as G and measurementCovariance are block-diagonal matrices
preintMeasCov_ = F * preintMeasCov_ * F.transpose();
preintMeasCov_.block<3, 3>(0, 0) += integrationCovariance() * deltaT;
preintMeasCov_.block<3, 3>(3, 3) += R_i * accelerometerCovariance()
@ -156,7 +154,8 @@ void ImuFactor::print(const string& s, const KeyFormatter& keyFormatter) const {
<< ")\n";
ImuFactorBase::print("");
_PIM_.print(" preintegrated measurements:");
this->noiseModel_->print(" noise model: ");
// Print standard deviations on covariance only
cout << " noise model sigmas: " << this->noiseModel_->sigmas().transpose() << endl;
}
//------------------------------------------------------------------------------

View File

@ -110,7 +110,7 @@ public:
* Add a single IMU measurement to the preintegration.
* @param measuredAcc Measured acceleration (in body frame, as given by the sensor)
* @param measuredOmega Measured angular velocity (as given by the sensor)
* @param deltaT Time interval between two consecutive IMU measurements
* @param deltaT Time interval between this and the last IMU measurement
* @param body_P_sensor Optional sensor frame (pose of the IMU in the body frame)
* @param Fout, Gout Jacobians used internally (only needed for testing)
*/

View File

@ -69,11 +69,8 @@ public:
/// Needed for testable
void print(const std::string& s) const {
std::cout << s << std::endl;
std::cout << "deltaTij [" << deltaTij_ << "]" << std::endl;
deltaRij_.print(" deltaRij ");
std::cout << "delRdelBiasOmega [" << delRdelBiasOmega_ << "]" << std::endl;
std::cout << "gyroscopeCovariance [" << gyroscopeCovariance_ << "]"
<< std::endl;
std::cout << " deltaTij [" << deltaTij_ << "]" << std::endl;
std::cout << " deltaRij.ypr = (" << deltaRij_.ypr().transpose() << ")" << std::endl;
}
/// Needed for testable

View File

@ -0,0 +1,357 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file PreintegrationBase.h
* @author Luca Carlone
* @author Stephen Williams
* @author Richard Roberts
* @author Vadim Indelman
* @author David Jensen
* @author Frank Dellaert
**/
#include "PreintegrationBase.h"
namespace gtsam {
PreintegrationBase::PreintegrationBase(const imuBias::ConstantBias& bias,
const Matrix3& measuredAccCovariance,
const Matrix3& measuredOmegaCovariance,
const Matrix3&integrationErrorCovariance,
const bool use2ndOrderIntegration)
: PreintegratedRotation(measuredOmegaCovariance),
biasHat_(bias),
use2ndOrderIntegration_(use2ndOrderIntegration),
deltaPij_(Vector3::Zero()),
deltaVij_(Vector3::Zero()),
delPdelBiasAcc_(Z_3x3),
delPdelBiasOmega_(Z_3x3),
delVdelBiasAcc_(Z_3x3),
delVdelBiasOmega_(Z_3x3),
accelerometerCovariance_(measuredAccCovariance),
integrationCovariance_(integrationErrorCovariance) {
}
/// Needed for testable
void PreintegrationBase::print(const std::string& s) const {
PreintegratedRotation::print(s);
std::cout << " deltaPij [ " << deltaPij_.transpose() << " ]" << std::endl;
std::cout << " deltaVij [ " << deltaVij_.transpose() << " ]" << std::endl;
biasHat_.print(" biasHat");
}
/// Needed for testable
bool PreintegrationBase::equals(const PreintegrationBase& other, double tol) const {
return PreintegratedRotation::equals(other, tol) && biasHat_.equals(other.biasHat_, tol)
&& equal_with_abs_tol(deltaPij_, other.deltaPij_, tol)
&& equal_with_abs_tol(deltaVij_, other.deltaVij_, tol)
&& equal_with_abs_tol(delPdelBiasAcc_, other.delPdelBiasAcc_, tol)
&& equal_with_abs_tol(delPdelBiasOmega_, other.delPdelBiasOmega_, tol)
&& equal_with_abs_tol(delVdelBiasAcc_, other.delVdelBiasAcc_, tol)
&& equal_with_abs_tol(delVdelBiasOmega_, other.delVdelBiasOmega_, tol)
&& equal_with_abs_tol(accelerometerCovariance_, other.accelerometerCovariance_, tol)
&& equal_with_abs_tol(integrationCovariance_, other.integrationCovariance_, tol);
}
/// Re-initialize PreintegratedMeasurements
void PreintegrationBase::resetIntegration() {
PreintegratedRotation::resetIntegration();
deltaPij_ = Vector3::Zero();
deltaVij_ = Vector3::Zero();
delPdelBiasAcc_ = Z_3x3;
delPdelBiasOmega_ = Z_3x3;
delVdelBiasAcc_ = Z_3x3;
delVdelBiasOmega_ = Z_3x3;
}
/// Update preintegrated measurements
void PreintegrationBase::updatePreintegratedMeasurements(const Vector3& correctedAcc,
const Rot3& incrR, const double deltaT,
OptionalJacobian<9, 9> F) {
const Matrix3 dRij = deltaRij(); // expensive
const Vector3 temp = dRij * correctedAcc * deltaT;
if (!use2ndOrderIntegration_) {
deltaPij_ += deltaVij_ * deltaT;
} else {
deltaPij_ += deltaVij_ * deltaT + 0.5 * temp * deltaT;
}
deltaVij_ += temp;
Matrix3 R_i, F_angles_angles;
if (F)
R_i = deltaRij(); // has to be executed before updateIntegratedRotationAndDeltaT as that updates deltaRij
updateIntegratedRotationAndDeltaT(incrR, deltaT, F ? &F_angles_angles : 0);
if (F) {
const Matrix3 F_vel_angles = -R_i * skewSymmetric(correctedAcc) * deltaT;
Matrix3 F_pos_angles;
if (use2ndOrderIntegration_)
F_pos_angles = 0.5 * F_vel_angles * deltaT;
else
F_pos_angles = Z_3x3;
// pos vel angle
*F << //
I_3x3, I_3x3 * deltaT, F_pos_angles, // pos
Z_3x3, I_3x3, F_vel_angles, // vel
Z_3x3, Z_3x3, F_angles_angles; // angle
}
}
/// Update Jacobians to be used during preintegration
void PreintegrationBase::updatePreintegratedJacobians(const Vector3& correctedAcc,
const Matrix3& D_Rincr_integratedOmega,
const Rot3& incrR, double deltaT) {
const Matrix3 dRij = deltaRij(); // expensive
const Matrix3 temp = -dRij * skewSymmetric(correctedAcc) * deltaT * delRdelBiasOmega();
if (!use2ndOrderIntegration_) {
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT;
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT;
} else {
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT - 0.5 * dRij * deltaT * deltaT;
delPdelBiasOmega_ += deltaT * (delVdelBiasOmega_ + temp * 0.5);
}
delVdelBiasAcc_ += -dRij * deltaT;
delVdelBiasOmega_ += temp;
update_delRdelBiasOmega(D_Rincr_integratedOmega, incrR, deltaT);
}
void PreintegrationBase::correctMeasurementsByBiasAndSensorPose(
const Vector3& measuredAcc, const Vector3& measuredOmega, Vector3& correctedAcc,
Vector3& correctedOmega, boost::optional<const Pose3&> body_P_sensor) {
correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
correctedOmega = biasHat_.correctGyroscope(measuredOmega);
// Then compensate for sensor-body displacement: we express the quantities
// (originally in the IMU frame) into the body frame
if (body_P_sensor) {
Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
Matrix3 body_omega_body__cross = skewSymmetric(correctedOmega);
correctedAcc = body_R_sensor * correctedAcc
- body_omega_body__cross * body_omega_body__cross * body_P_sensor->translation().vector();
// linear acceleration vector in the body frame
}
}
/// Predict state at time j
//------------------------------------------------------------------------------
PoseVelocityBias PreintegrationBase::predict(
const Pose3& pose_i, const Vector3& vel_i, const imuBias::ConstantBias& bias_i,
const Vector3& gravity, const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis,
boost::optional<Vector3&> deltaPij_biascorrected_out,
boost::optional<Vector3&> deltaVij_biascorrected_out) const {
const imuBias::ConstantBias biasIncr = bias_i - biasHat();
const Vector3& biasAccIncr = biasIncr.accelerometer();
const Vector3& biasOmegaIncr = biasIncr.gyroscope();
const Rot3& Rot_i = pose_i.rotation();
const Matrix3 Rot_i_matrix = Rot_i.matrix();
const Vector3 pos_i = pose_i.translation().vector();
// Predict state at time j
/* ---------------------------------------------------------------------------------------------------- */
const Vector3 deltaPij_biascorrected = deltaPij() + delPdelBiasAcc() * biasAccIncr
+ delPdelBiasOmega() * biasOmegaIncr;
if (deltaPij_biascorrected_out) // if desired, store this
*deltaPij_biascorrected_out = deltaPij_biascorrected;
const double dt = deltaTij(), dt2 = dt * dt;
Vector3 pos_j = pos_i + Rot_i_matrix * deltaPij_biascorrected + vel_i * dt
- omegaCoriolis.cross(vel_i) * dt2 // Coriolis term - we got rid of the 2 wrt ins paper
+ 0.5 * gravity * dt2;
const Vector3 deltaVij_biascorrected = deltaVij() + delVdelBiasAcc() * biasAccIncr
+ delVdelBiasOmega() * biasOmegaIncr;
if (deltaVij_biascorrected_out) // if desired, store this
*deltaVij_biascorrected_out = deltaVij_biascorrected;
Vector3 vel_j = Vector3(
vel_i + Rot_i_matrix * deltaVij_biascorrected - 2 * omegaCoriolis.cross(vel_i) * dt // Coriolis term
+ gravity * dt);
if (use2ndOrderCoriolis) {
pos_j += -0.5 * omegaCoriolis.cross(omegaCoriolis.cross(pos_i)) * dt2; // 2nd order coriolis term for position
vel_j += -omegaCoriolis.cross(omegaCoriolis.cross(pos_i)) * dt; // 2nd order term for velocity
}
const Rot3 deltaRij_biascorrected = biascorrectedDeltaRij(biasOmegaIncr);
// deltaRij_biascorrected = deltaRij * expmap(delRdelBiasOmega * biasOmegaIncr)
const Vector3 biascorrectedOmega = Rot3::Logmap(deltaRij_biascorrected);
const Vector3 correctedOmega = biascorrectedOmega
- Rot_i_matrix.transpose() * omegaCoriolis * dt; // Coriolis term
const Rot3 correctedDeltaRij = Rot3::Expmap(correctedOmega);
const Rot3 Rot_j = Rot_i.compose(correctedDeltaRij);
const Pose3 pose_j = Pose3(Rot_j, Point3(pos_j));
return PoseVelocityBias(pose_j, vel_j, bias_i); // bias is predicted as a constant
}
/// Compute errors w.r.t. preintegrated measurements and Jacobians wrpt pose_i, vel_i, bias_i, pose_j, bias_j
//------------------------------------------------------------------------------
Vector9 PreintegrationBase::computeErrorAndJacobians(const Pose3& pose_i, const Vector3& vel_i,
const Pose3& pose_j, const Vector3& vel_j,
const imuBias::ConstantBias& bias_i,
const Vector3& gravity,
const Vector3& omegaCoriolis,
const bool use2ndOrderCoriolis,
OptionalJacobian<9, 6> H1,
OptionalJacobian<9, 3> H2,
OptionalJacobian<9, 6> H3,
OptionalJacobian<9, 3> H4,
OptionalJacobian<9, 6> H5) const {
// We need the mismatch w.r.t. the biases used for preintegration
const Vector3 biasOmegaIncr = bias_i.gyroscope() - biasHat().gyroscope();
// we give some shorter name to rotations and translations
const Rot3& Ri = pose_i.rotation();
const Matrix3 Ri_transpose_matrix = Ri.transpose();
const Rot3& Rj = pose_j.rotation();
const Vector3 pos_j = pose_j.translation().vector();
// Evaluate residual error, according to [3]
/* ---------------------------------------------------------------------------------------------------- */
Vector3 deltaPij_biascorrected, deltaVij_biascorrected;
PoseVelocityBias predictedState_j = predict(pose_i, vel_i, bias_i, gravity, omegaCoriolis,
use2ndOrderCoriolis, deltaPij_biascorrected,
deltaVij_biascorrected);
// Ri.transpose() is important here to preserve a model with *additive* Gaussian noise of correct covariance
const Vector3 fp = Ri_transpose_matrix * (pos_j - predictedState_j.pose.translation().vector());
// Ri.transpose() is important here to preserve a model with *additive* Gaussian noise of correct covariance
const Vector3 fv = Ri_transpose_matrix * (vel_j - predictedState_j.velocity);
// fR will be computed later. Note: it is the same as: fR = (predictedState_j.pose.translation()).between(Rot_j)
/* ---------------------------------------------------------------------------------------------------- */
// Get Get so<3> version of bias corrected rotation
// If H5 is asked for, we will need the Jacobian, which we store in H5
// H5 will then be corrected below to take into account the Coriolis effect
Matrix3 D_cThetaRij_biasOmegaIncr;
const Vector3 biascorrectedOmega = biascorrectedThetaRij(biasOmegaIncr,
H5 ? &D_cThetaRij_biasOmegaIncr : 0);
// Coriolis term, note inconsistent with AHRS, where coriolisHat is *after* integration
const Vector3 coriolis = integrateCoriolis(Ri, omegaCoriolis);
const Vector3 correctedOmega = biascorrectedOmega - coriolis;
// Calculate Jacobians, matrices below needed only for some Jacobians...
Vector3 fR;
Matrix3 D_cDeltaRij_cOmega, D_coriolis, D_fR_fRrot, Ritranspose_omegaCoriolisHat;
if (H1 || H2)
Ritranspose_omegaCoriolisHat = Ri_transpose_matrix * skewSymmetric(omegaCoriolis);
// This is done to save computation: we ask for the jacobians only when they are needed
const double dt = deltaTij(), dt2 = dt*dt;
Rot3 fRrot;
const Rot3 RiBetweenRj = Rot3(Ri_transpose_matrix) * Rj;
if (H1 || H2 || H3 || H4 || H5) {
const Rot3 correctedDeltaRij = Rot3::Expmap(correctedOmega, D_cDeltaRij_cOmega);
// Residual rotation error
fRrot = correctedDeltaRij.between(RiBetweenRj);
fR = Rot3::Logmap(fRrot, D_fR_fRrot);
D_coriolis = -D_cDeltaRij_cOmega * skewSymmetric(coriolis);
} else {
const Rot3 correctedDeltaRij = Rot3::Expmap(correctedOmega);
// Residual rotation error
fRrot = correctedDeltaRij.between(RiBetweenRj);
fR = Rot3::Logmap(fRrot);
}
if (H1) {
Matrix3 dfPdPi = -I_3x3, dfVdPi = Z_3x3;
if (use2ndOrderCoriolis) {
// this is the same as: Ri.transpose() * omegaCoriolisHat * omegaCoriolisHat * Ri.matrix()
const Matrix3 temp = Ritranspose_omegaCoriolisHat
* (-Ritranspose_omegaCoriolisHat.transpose());
dfPdPi += 0.5 * temp * dt2;
dfVdPi += temp * dt;
}
(*H1) <<
// dfP/dRi
skewSymmetric(fp + deltaPij_biascorrected),
// dfP/dPi
dfPdPi,
// dfV/dRi
skewSymmetric(fv + deltaVij_biascorrected),
// dfV/dPi
dfVdPi,
// dfR/dRi
D_fR_fRrot * (-Rj.between(Ri).matrix() - fRrot.inverse().matrix() * D_coriolis),
// dfR/dPi
Z_3x3;
}
if (H2) {
(*H2) <<
// dfP/dVi
-Ri_transpose_matrix * dt + Ritranspose_omegaCoriolisHat * dt2, // Coriolis term - we got rid of the 2 wrt ins paper
// dfV/dVi
-Ri_transpose_matrix + 2 * Ritranspose_omegaCoriolisHat * dt, // Coriolis term
// dfR/dVi
Z_3x3;
}
if (H3) {
(*H3) <<
// dfP/dPosej
Z_3x3, Ri_transpose_matrix * Rj.matrix(),
// dfV/dPosej
Matrix::Zero(3, 6),
// dfR/dPosej
D_fR_fRrot, Z_3x3;
}
if (H4) {
(*H4) <<
// dfP/dVj
Z_3x3,
// dfV/dVj
Ri_transpose_matrix,
// dfR/dVj
Z_3x3;
}
if (H5) {
// H5 by this point already contains 3*3 biascorrectedThetaRij derivative
const Matrix3 JbiasOmega = D_cDeltaRij_cOmega * D_cThetaRij_biasOmegaIncr;
(*H5) <<
// dfP/dBias
-delPdelBiasAcc(), -delPdelBiasOmega(),
// dfV/dBias
-delVdelBiasAcc(), -delVdelBiasOmega(),
// dfR/dBias
Z_3x3, D_fR_fRrot * (-fRrot.inverse().matrix() * JbiasOmega);
}
Vector9 r;
r << fp, fv, fR;
return r;
}
ImuBase::ImuBase()
: gravity_(Vector3(0.0, 0.0, 9.81)),
omegaCoriolis_(Vector3(0.0, 0.0, 0.0)),
body_P_sensor_(boost::none),
use2ndOrderCoriolis_(false) {
}
ImuBase::ImuBase(const Vector3& gravity, const Vector3& omegaCoriolis,
boost::optional<const Pose3&> body_P_sensor, const bool use2ndOrderCoriolis)
: gravity_(gravity),
omegaCoriolis_(omegaCoriolis),
body_P_sensor_(body_P_sensor),
use2ndOrderCoriolis_(use2ndOrderCoriolis) {
}
} /// namespace gtsam

View File

@ -23,6 +23,9 @@
#include <gtsam/navigation/PreintegratedRotation.h>
#include <gtsam/navigation/ImuBias.h>
#include <gtsam/geometry/Pose3.h>
#include <gtsam/base/Matrix.h>
#include <gtsam/base/Vector.h>
namespace gtsam {
@ -34,9 +37,10 @@ struct PoseVelocityBias {
Vector3 velocity;
imuBias::ConstantBias bias;
PoseVelocityBias(const Pose3& _pose, const Vector3& _velocity,
const imuBias::ConstantBias _bias) :
pose(_pose), velocity(_velocity), bias(_bias) {
PoseVelocityBias(const Pose3& _pose, const Vector3& _velocity, const imuBias::ConstantBias _bias)
: pose(_pose),
velocity(_velocity),
bias(_bias) {
}
};
@ -46,24 +50,24 @@ struct PoseVelocityBias {
* It includes the definitions of the preintegrated variables and the methods
* to access, print, and compare them.
*/
class PreintegrationBase: public PreintegratedRotation {
class PreintegrationBase : public PreintegratedRotation {
imuBias::ConstantBias biasHat_; ///< Acceleration and angular rate bias values used during preintegration
bool use2ndOrderIntegration_; ///< Controls the order of integration
imuBias::ConstantBias biasHat_; ///< Acceleration and angular rate bias values used during preintegration
bool use2ndOrderIntegration_; ///< Controls the order of integration
Vector3 deltaPij_; ///< Preintegrated relative position (does not take into account velocity at time i, see deltap+, in [2]) (in frame i)
Vector3 deltaVij_; ///< Preintegrated relative velocity (in global frame)
Vector3 deltaPij_; ///< Preintegrated relative position (does not take into account velocity at time i, see deltap+, in [2]) (in frame i)
Vector3 deltaVij_; ///< Preintegrated relative velocity (in global frame)
Matrix3 delPdelBiasAcc_; ///< Jacobian of preintegrated position w.r.t. acceleration bias
Matrix3 delPdelBiasOmega_; ///< Jacobian of preintegrated position w.r.t. angular rate bias
Matrix3 delVdelBiasAcc_; ///< Jacobian of preintegrated velocity w.r.t. acceleration bias
Matrix3 delVdelBiasOmega_; ///< Jacobian of preintegrated velocity w.r.t. angular rate bias
Matrix3 delPdelBiasAcc_; ///< Jacobian of preintegrated position w.r.t. acceleration bias
Matrix3 delPdelBiasOmega_; ///< Jacobian of preintegrated position w.r.t. angular rate bias
Matrix3 delVdelBiasAcc_; ///< Jacobian of preintegrated velocity w.r.t. acceleration bias
Matrix3 delVdelBiasOmega_; ///< Jacobian of preintegrated velocity w.r.t. angular rate bias
Matrix3 accelerometerCovariance_; ///< continuous-time "Covariance" of accelerometer measurements
Matrix3 integrationCovariance_; ///< continuous-time "Covariance" describing integration uncertainty
const Matrix3 accelerometerCovariance_; ///< continuous-time "Covariance" of accelerometer measurements
const Matrix3 integrationCovariance_; ///< continuous-time "Covariance" describing integration uncertainty
/// (to compensate errors in Euler integration)
public:
public:
/**
* Default constructor, initializes the variables in the base class
@ -71,18 +75,9 @@ public:
* @param use2ndOrderIntegration Controls the order of integration
* (if false: p(t+1) = p(t) + v(t) deltaT ; if true: p(t+1) = p(t) + v(t) deltaT + 0.5 * acc(t) deltaT^2)
*/
PreintegrationBase(const imuBias::ConstantBias& bias,
const Matrix3& measuredAccCovariance,
const Matrix3& measuredOmegaCovariance,
const Matrix3&integrationErrorCovariance,
const bool use2ndOrderIntegration) :
PreintegratedRotation(measuredOmegaCovariance), biasHat_(bias), use2ndOrderIntegration_(
use2ndOrderIntegration), deltaPij_(Vector3::Zero()), deltaVij_(
Vector3::Zero()), delPdelBiasAcc_(Z_3x3), delPdelBiasOmega_(Z_3x3), delVdelBiasAcc_(
Z_3x3), delVdelBiasOmega_(Z_3x3), accelerometerCovariance_(
measuredAccCovariance), integrationCovariance_(
integrationErrorCovariance) {
}
PreintegrationBase(const imuBias::ConstantBias& bias, const Matrix3& measuredAccCovariance,
const Matrix3& measuredOmegaCovariance,
const Matrix3&integrationErrorCovariance, const bool use2ndOrderIntegration);
/// methods to access class variables
bool use2ndOrderIntegration() const {
@ -99,7 +94,7 @@ public:
}
Vector6 biasHatVector() const {
return biasHat_.vector();
} // expensive
} // expensive
const Matrix3& delPdelBiasAcc() const {
return delPdelBiasAcc_;
}
@ -120,325 +115,48 @@ public:
return integrationCovariance_;
}
/// Needed for testable
void print(const std::string& s) const {
PreintegratedRotation::print(s);
std::cout << " accelerometerCovariance [ " << accelerometerCovariance_
<< " ]" << std::endl;
std::cout << " integrationCovariance [ " << integrationCovariance_ << " ]"
<< std::endl;
std::cout << " deltaPij [ " << deltaPij_.transpose() << " ]" << std::endl;
std::cout << " deltaVij [ " << deltaVij_.transpose() << " ]" << std::endl;
biasHat_.print(" biasHat");
}
/// print
void print(const std::string& s) const;
/// Needed for testable
bool equals(const PreintegrationBase& other, double tol) const {
return PreintegratedRotation::equals(other, tol)
&& biasHat_.equals(other.biasHat_, tol)
&& equal_with_abs_tol(deltaPij_, other.deltaPij_, tol)
&& equal_with_abs_tol(deltaVij_, other.deltaVij_, tol)
&& equal_with_abs_tol(delPdelBiasAcc_, other.delPdelBiasAcc_, tol)
&& equal_with_abs_tol(delPdelBiasOmega_, other.delPdelBiasOmega_, tol)
&& equal_with_abs_tol(delVdelBiasAcc_, other.delVdelBiasAcc_, tol)
&& equal_with_abs_tol(delVdelBiasOmega_, other.delVdelBiasOmega_, tol)
&& equal_with_abs_tol(accelerometerCovariance_,
other.accelerometerCovariance_, tol)
&& equal_with_abs_tol(integrationCovariance_,
other.integrationCovariance_, tol);
}
/// check equality
bool equals(const PreintegrationBase& other, double tol) const;
/// Re-initialize PreintegratedMeasurements
void resetIntegration() {
PreintegratedRotation::resetIntegration();
deltaPij_ = Vector3::Zero();
deltaVij_ = Vector3::Zero();
delPdelBiasAcc_ = Z_3x3;
delPdelBiasOmega_ = Z_3x3;
delVdelBiasAcc_ = Z_3x3;
delVdelBiasOmega_ = Z_3x3;
}
void resetIntegration();
/// Update preintegrated measurements
void updatePreintegratedMeasurements(const Vector3& correctedAcc,
const Rot3& incrR, const double deltaT, OptionalJacobian<9, 9> F) {
Matrix3 dRij = deltaRij(); // expensive
Vector3 temp = dRij * correctedAcc * deltaT;
if (!use2ndOrderIntegration_) {
deltaPij_ += deltaVij_ * deltaT;
} else {
deltaPij_ += deltaVij_ * deltaT + 0.5 * temp * deltaT;
}
deltaVij_ += temp;
Matrix3 R_i, F_angles_angles;
if (F)
R_i = deltaRij(); // has to be executed before updateIntegratedRotationAndDeltaT as that updates deltaRij
updateIntegratedRotationAndDeltaT(incrR, deltaT, F ? &F_angles_angles : 0);
if (F) {
Matrix3 F_vel_angles = -R_i * skewSymmetric(correctedAcc) * deltaT;
Matrix3 F_pos_angles;
if (use2ndOrderIntegration_)
F_pos_angles = 0.5 * F_vel_angles * deltaT;
else
F_pos_angles = Z_3x3;
// pos vel angle
*F << //
I_3x3, I_3x3 * deltaT, F_pos_angles, // pos
Z_3x3, I_3x3, F_vel_angles, // vel
Z_3x3, Z_3x3, F_angles_angles; // angle
}
}
void updatePreintegratedMeasurements(const Vector3& correctedAcc, const Rot3& incrR,
const double deltaT, OptionalJacobian<9, 9> F);
/// Update Jacobians to be used during preintegration
void updatePreintegratedJacobians(const Vector3& correctedAcc,
const Matrix3& D_Rincr_integratedOmega, const Rot3& incrR,
double deltaT) {
Matrix3 dRij = deltaRij(); // expensive
Matrix3 temp = -dRij * skewSymmetric(correctedAcc) * deltaT
* delRdelBiasOmega();
if (!use2ndOrderIntegration_) {
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT;
delPdelBiasOmega_ += delVdelBiasOmega_ * deltaT;
} else {
delPdelBiasAcc_ += delVdelBiasAcc_ * deltaT
- 0.5 * dRij * deltaT * deltaT;
delPdelBiasOmega_ += deltaT * (delVdelBiasOmega_ + temp * 0.5);
}
delVdelBiasAcc_ += -dRij * deltaT;
delVdelBiasOmega_ += temp;
update_delRdelBiasOmega(D_Rincr_integratedOmega, incrR, deltaT);
}
const Matrix3& D_Rincr_integratedOmega, const Rot3& incrR,
double deltaT);
void correctMeasurementsByBiasAndSensorPose(const Vector3& measuredAcc,
const Vector3& measuredOmega, Vector3& correctedAcc,
Vector3& correctedOmega, boost::optional<const Pose3&> body_P_sensor) {
correctedAcc = biasHat_.correctAccelerometer(measuredAcc);
correctedOmega = biasHat_.correctGyroscope(measuredOmega);
// Then compensate for sensor-body displacement: we express the quantities
// (originally in the IMU frame) into the body frame
if (body_P_sensor) {
Matrix3 body_R_sensor = body_P_sensor->rotation().matrix();
correctedOmega = body_R_sensor * correctedOmega; // rotation rate vector in the body frame
Matrix3 body_omega_body__cross = skewSymmetric(correctedOmega);
correctedAcc = body_R_sensor * correctedAcc
- body_omega_body__cross * body_omega_body__cross
* body_P_sensor->translation().vector();
// linear acceleration vector in the body frame
}
}
const Vector3& measuredOmega, Vector3& correctedAcc,
Vector3& correctedOmega,
boost::optional<const Pose3&> body_P_sensor);
/// Predict state at time j
//------------------------------------------------------------------------------
PoseVelocityBias predict(const Pose3& pose_i, const Vector3& vel_i,
const imuBias::ConstantBias& bias_i, const Vector3& gravity,
const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis = false,
PoseVelocityBias predict(
const Pose3& pose_i, const Vector3& vel_i, const imuBias::ConstantBias& bias_i,
const Vector3& gravity, const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis = false,
boost::optional<Vector3&> deltaPij_biascorrected_out = boost::none,
boost::optional<Vector3&> deltaVij_biascorrected_out = boost::none) const {
const imuBias::ConstantBias biasIncr = bias_i - biasHat();
const Vector3& biasAccIncr = biasIncr.accelerometer();
const Vector3& biasOmegaIncr = biasIncr.gyroscope();
const Rot3& Rot_i = pose_i.rotation();
const Matrix3& Rot_i_matrix = Rot_i.matrix();
const Vector3& pos_i = pose_i.translation().vector();
// Predict state at time j
/* ---------------------------------------------------------------------------------------------------- */
Vector3 deltaPij_biascorrected = deltaPij() + delPdelBiasAcc() * biasAccIncr
+ delPdelBiasOmega() * biasOmegaIncr;
if (deltaPij_biascorrected_out) // if desired, store this
*deltaPij_biascorrected_out = deltaPij_biascorrected;
Vector3 pos_j = pos_i + Rot_i_matrix * deltaPij_biascorrected
+ vel_i * deltaTij()
- omegaCoriolis.cross(vel_i) * deltaTij() * deltaTij() // Coriolis term - we got rid of the 2 wrt ins paper
+ 0.5 * gravity * deltaTij() * deltaTij();
Vector3 deltaVij_biascorrected = deltaVij() + delVdelBiasAcc() * biasAccIncr
+ delVdelBiasOmega() * biasOmegaIncr;
if (deltaVij_biascorrected_out) // if desired, store this
*deltaVij_biascorrected_out = deltaVij_biascorrected;
Vector3 vel_j = Vector3(
vel_i + Rot_i_matrix * deltaVij_biascorrected
- 2 * omegaCoriolis.cross(vel_i) * deltaTij() // Coriolis term
+ gravity * deltaTij());
if (use2ndOrderCoriolis) {
pos_j += -0.5 * omegaCoriolis.cross(omegaCoriolis.cross(pos_i))
* deltaTij() * deltaTij(); // 2nd order coriolis term for position
vel_j += -omegaCoriolis.cross(omegaCoriolis.cross(pos_i)) * deltaTij(); // 2nd order term for velocity
}
const Rot3 deltaRij_biascorrected = biascorrectedDeltaRij(biasOmegaIncr);
// deltaRij_biascorrected = deltaRij * expmap(delRdelBiasOmega * biasOmegaIncr)
Vector3 biascorrectedOmega = Rot3::Logmap(deltaRij_biascorrected);
Vector3 correctedOmega = biascorrectedOmega
- Rot_i_matrix.transpose() * omegaCoriolis * deltaTij(); // Coriolis term
const Rot3 correctedDeltaRij = Rot3::Expmap(correctedOmega);
const Rot3 Rot_j = Rot_i.compose(correctedDeltaRij);
Pose3 pose_j = Pose3(Rot_j, Point3(pos_j));
return PoseVelocityBias(pose_j, vel_j, bias_i); // bias is predicted as a constant
}
boost::optional<Vector3&> deltaVij_biascorrected_out = boost::none) const;
/// Compute errors w.r.t. preintegrated measurements and jacobians wrt pose_i, vel_i, bias_i, pose_j, bias_j
//------------------------------------------------------------------------------
Vector9 computeErrorAndJacobians(const Pose3& pose_i, const Vector3& vel_i,
const Pose3& pose_j, const Vector3& vel_j,
const imuBias::ConstantBias& bias_i, const Vector3& gravity,
const Vector3& omegaCoriolis, const bool use2ndOrderCoriolis,
OptionalJacobian<9, 6> H1 = boost::none, OptionalJacobian<9, 3> H2 =
boost::none, OptionalJacobian<9, 6> H3 = boost::none,
OptionalJacobian<9, 3> H4 = boost::none, OptionalJacobian<9, 6> H5 =
boost::none) const {
Vector9 computeErrorAndJacobians(const Pose3& pose_i, const Vector3& vel_i, const Pose3& pose_j,
const Vector3& vel_j, const imuBias::ConstantBias& bias_i,
const Vector3& gravity, const Vector3& omegaCoriolis,
const bool use2ndOrderCoriolis, OptionalJacobian<9, 6> H1 =
boost::none,
OptionalJacobian<9, 3> H2 = boost::none,
OptionalJacobian<9, 6> H3 = boost::none,
OptionalJacobian<9, 3> H4 = boost::none,
OptionalJacobian<9, 6> H5 = boost::none) const;
// We need the mismatch w.r.t. the biases used for preintegration
const Vector3 biasOmegaIncr = bias_i.gyroscope() - biasHat().gyroscope();
// we give some shorter name to rotations and translations
const Rot3& Ri = pose_i.rotation();
const Rot3& Ri_transpose = Ri.transpose();
const Matrix& Ri_transpose_matrix = Ri_transpose.matrix();
const Rot3& Rj = pose_j.rotation();
const Vector3& pos_j = pose_j.translation().vector();
// Evaluate residual error, according to [3]
/* ---------------------------------------------------------------------------------------------------- */
Vector3 deltaPij_biascorrected, deltaVij_biascorrected;
PoseVelocityBias predictedState_j = predict(pose_i, vel_i, bias_i, gravity,
omegaCoriolis, use2ndOrderCoriolis, deltaPij_biascorrected,
deltaVij_biascorrected);
// Ri.transpose() is important here to preserve a model with *additive* Gaussian noise of correct covariance
const Vector3 fp = Ri_transpose_matrix
* (pos_j - predictedState_j.pose.translation().vector());
// Ri.transpose() is important here to preserve a model with *additive* Gaussian noise of correct covariance
const Vector3 fv = Ri_transpose_matrix * (vel_j - predictedState_j.velocity);
// fR will be computed later. Note: it is the same as: fR = (predictedState_j.pose.translation()).between(Rot_j)
/* ---------------------------------------------------------------------------------------------------- */
// Get Get so<3> version of bias corrected rotation
// If H5 is asked for, we will need the Jacobian, which we store in H5
// H5 will then be corrected below to take into account the Coriolis effect
Matrix3 D_cThetaRij_biasOmegaIncr;
Vector3 biascorrectedOmega = biascorrectedThetaRij(biasOmegaIncr,
H5 ? &D_cThetaRij_biasOmegaIncr : 0);
// Coriolis term, note inconsistent with AHRS, where coriolisHat is *after* integration
const Vector3 coriolis = integrateCoriolis(Ri, omegaCoriolis);
Vector3 correctedOmega = biascorrectedOmega - coriolis;
// Calculate Jacobians, matrices below needed only for some Jacobians...
Vector3 fR;
Rot3 correctedDeltaRij, fRrot;
Matrix3 D_cDeltaRij_cOmega, D_coriolis, D_fR_fRrot,
Ritranspose_omegaCoriolisHat;
if (H1 || H2)
Ritranspose_omegaCoriolisHat = Ri_transpose_matrix
* skewSymmetric(omegaCoriolis);
// This is done to save computation: we ask for the jacobians only when they are needed
Rot3 RiBetweenRj = Ri_transpose*Rj;
if (H1 || H2 || H3 || H4 || H5) {
correctedDeltaRij = Rot3::Expmap(correctedOmega, D_cDeltaRij_cOmega);
// Residual rotation error
fRrot = correctedDeltaRij.between(RiBetweenRj);
fR = Rot3::Logmap(fRrot, D_fR_fRrot);
D_coriolis = -D_cDeltaRij_cOmega * skewSymmetric(coriolis);
} else {
correctedDeltaRij = Rot3::Expmap(correctedOmega);
// Residual rotation error
fRrot = correctedDeltaRij.between(RiBetweenRj);
fR = Rot3::Logmap(fRrot);
}
if (H1) {
H1->resize(9, 6);
Matrix3 dfPdPi = -I_3x3;
Matrix3 dfVdPi = Z_3x3;
if (use2ndOrderCoriolis) {
// this is the same as: Ri.transpose() * omegaCoriolisHat * omegaCoriolisHat * Ri.matrix()
Matrix3 temp = Ritranspose_omegaCoriolisHat
* (-Ritranspose_omegaCoriolisHat.transpose());
dfPdPi += 0.5 * temp * deltaTij() * deltaTij();
dfVdPi += temp * deltaTij();
}
(*H1) <<
// dfP/dRi
skewSymmetric(fp + deltaPij_biascorrected),
// dfP/dPi
dfPdPi,
// dfV/dRi
skewSymmetric(fv + deltaVij_biascorrected),
// dfV/dPi
dfVdPi,
// dfR/dRi
D_fR_fRrot
* (-Rj.between(Ri).matrix() - fRrot.inverse().matrix() * D_coriolis),
// dfR/dPi
Z_3x3;
}
if (H2) {
H2->resize(9, 3);
(*H2) <<
// dfP/dVi
- Ri_transpose_matrix * deltaTij()
+ Ritranspose_omegaCoriolisHat * deltaTij() * deltaTij(), // Coriolis term - we got rid of the 2 wrt ins paper
// dfV/dVi
- Ri_transpose_matrix + 2 * Ritranspose_omegaCoriolisHat * deltaTij(), // Coriolis term
// dfR/dVi
Z_3x3;
}
if (H3) {
H3->resize(9, 6);
(*H3) <<
// dfP/dPosej
Z_3x3, Ri_transpose_matrix * Rj.matrix(),
// dfV/dPosej
Matrix::Zero(3, 6),
// dfR/dPosej
D_fR_fRrot, Z_3x3;
}
if (H4) {
H4->resize(9, 3);
(*H4) <<
// dfP/dVj
Z_3x3,
// dfV/dVj
Ri_transpose_matrix,
// dfR/dVj
Z_3x3;
}
if (H5) {
// H5 by this point already contains 3*3 biascorrectedThetaRij derivative
const Matrix3 JbiasOmega = D_cDeltaRij_cOmega * D_cThetaRij_biasOmegaIncr;
H5->resize(9, 6);
(*H5) <<
// dfP/dBias
-delPdelBiasAcc(), -delPdelBiasOmega(),
// dfV/dBias
-delVdelBiasAcc(), -delVdelBiasOmega(),
// dfR/dBias
Z_3x3, D_fR_fRrot * (-fRrot.inverse().matrix() * JbiasOmega);
}
Vector9 r;
r << fp, fv, fR;
return r;
}
private:
private:
/** Serialization function */
friend class boost::serialization::access;
template<class ARCHIVE>
@ -456,26 +174,22 @@ private:
class ImuBase {
protected:
protected:
Vector3 gravity_;
Vector3 omegaCoriolis_;
boost::optional<Pose3> body_P_sensor_; ///< The pose of the sensor in the body frame
bool use2ndOrderCoriolis_; ///< Controls whether higher order terms are included when calculating the Coriolis Effect
boost::optional<Pose3> body_P_sensor_; ///< The pose of the sensor in the body frame
bool use2ndOrderCoriolis_; ///< Controls whether higher order terms are included when calculating the Coriolis Effect
public:
public:
ImuBase() :
gravity_(Vector3(0.0, 0.0, 9.81)), omegaCoriolis_(Vector3(0.0, 0.0, 0.0)), body_P_sensor_(
boost::none), use2ndOrderCoriolis_(false) {
}
/// Default constructor, with decent gravity and zero coriolis
ImuBase();
/// Fully fledge constructor
ImuBase(const Vector3& gravity, const Vector3& omegaCoriolis,
boost::optional<const Pose3&> body_P_sensor = boost::none,
const bool use2ndOrderCoriolis = false) :
gravity_(gravity), omegaCoriolis_(omegaCoriolis), body_P_sensor_(
body_P_sensor), use2ndOrderCoriolis_(use2ndOrderCoriolis) {
}
boost::optional<const Pose3&> body_P_sensor = boost::none,
const bool use2ndOrderCoriolis = false);
const Vector3& gravity() const {
return gravity_;
@ -486,4 +200,4 @@ public:
};
} /// namespace gtsam
} /// namespace gtsam

View File

@ -17,6 +17,7 @@
#include <gtsam/navigation/ImuFactor.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/nonlinear/factorTesting.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/navigation/ImuBias.h>
#include <gtsam/geometry/Pose3.h>
@ -81,19 +82,27 @@ Rot3 updatePreintegratedRot(const Rot3& deltaRij_old,
return deltaRij_new;
}
// Auxiliary functions to test preintegrated Jacobians
// delPdelBiasAcc_ delPdelBiasOmega_ delVdelBiasAcc_ delVdelBiasOmega_ delRdelBiasOmega_
// Define covariance matrices
/* ************************************************************************* */
double accNoiseVar = 0.01;
double omegaNoiseVar = 0.03;
double intNoiseVar = 0.0001;
const Matrix3 kMeasuredAccCovariance = accNoiseVar * Matrix3::Identity();
const Matrix3 kMeasuredOmegaCovariance = omegaNoiseVar * Matrix3::Identity();
const Matrix3 kIntegrationErrorCovariance = intNoiseVar * Matrix3::Identity();
// Auxiliary functions to test preintegrated Jacobians
// delPdelBiasAcc_ delPdelBiasOmega_ delVdelBiasAcc_ delVdelBiasOmega_ delRdelBiasOmega_
/* ************************************************************************* */
ImuFactor::PreintegratedMeasurements evaluatePreintegratedMeasurements(
const imuBias::ConstantBias& bias, const list<Vector3>& measuredAccs,
const list<Vector3>& measuredOmegas, const list<double>& deltaTs,
const bool use2ndOrderIntegration = false) {
ImuFactor::PreintegratedMeasurements result(bias,
accNoiseVar * Matrix3::Identity(), omegaNoiseVar * Matrix3::Identity(),
intNoiseVar * Matrix3::Identity(), use2ndOrderIntegration);
kMeasuredAccCovariance,
kMeasuredOmegaCovariance,
kIntegrationErrorCovariance,
use2ndOrderIntegration);
list<Vector3>::const_iterator itAcc = measuredAccs.begin();
list<Vector3>::const_iterator itOmega = measuredOmegas.begin();
@ -156,8 +165,11 @@ TEST( ImuFactor, PreintegratedMeasurements ) {
bool use2ndOrderIntegration = true;
// Actual preintegrated values
ImuFactor::PreintegratedMeasurements actual1(bias, Matrix3::Zero(),
Matrix3::Zero(), Matrix3::Zero(), use2ndOrderIntegration);
ImuFactor::PreintegratedMeasurements actual1(bias,
kMeasuredAccCovariance,
kMeasuredOmegaCovariance,
kIntegrationErrorCovariance,
use2ndOrderIntegration);
actual1.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
EXPECT(
@ -208,8 +220,11 @@ TEST( ImuFactor, ErrorAndJacobians ) {
Vector3 measuredAcc = x1.rotation().unrotate(-Point3(gravity)).vector();
double deltaT = 1.0;
bool use2ndOrderIntegration = true;
ImuFactor::PreintegratedMeasurements pre_int_data(bias, Matrix3::Zero(),
Matrix3::Zero(), Matrix3::Zero(), use2ndOrderIntegration);
ImuFactor::PreintegratedMeasurements pre_int_data(bias,
kMeasuredAccCovariance,
kMeasuredOmegaCovariance,
kIntegrationErrorCovariance,
use2ndOrderIntegration);
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// Create factor
@ -260,6 +275,40 @@ TEST( ImuFactor, ErrorAndJacobians ) {
Matrix H5e = numericalDerivative11<Vector, imuBias::ConstantBias>(
boost::bind(&callEvaluateError, factor, x1, v1, x2, v2, _1), bias);
EXPECT(assert_equal(H5e, H5a));
////////////////////////////////////////////////////////////////////////////
// Evaluate error with wrong values
Vector3 v2_wrong = v2 + Vector3(0.1, 0.1, 0.1);
errorActual = factor.evaluateError(x1, v1, x2, v2_wrong, bias);
errorExpected << 0, 0, 0, 0.0724744871, 0.040715657, 0.151952901, 0, 0, 0;
EXPECT(assert_equal(errorExpected, errorActual, 1e-6));
Values values;
values.insert(X(1), x1);
values.insert(V(1), v1);
values.insert(X(2), x2);
values.insert(V(2), v2_wrong);
values.insert(B(1), bias);
errorExpected << 0, 0, 0, 0.0724744871, 0.040715657, 0.151952901, 0, 0, 0;
EXPECT(assert_equal(factor.unwhitenedError(values), errorActual, 1e-6));
// Make sure the whitening is done correctly
Matrix cov = pre_int_data.preintMeasCov();
Matrix R = RtR(cov.inverse());
Vector whitened = R * errorActual;
EXPECT(assert_equal(0.5 * whitened.squaredNorm(), factor.error(values), 1e-6));
///////////////////////////////////////////////////////////////////////////////
// Make sure linearization is correct
// Create expected value by numerical differentiation
JacobianFactor expected = linearizeNumerically(factor, values, 1e-8);
// Create actual value by linearize
GaussianFactor::shared_ptr linearized = factor.linearize(values);
JacobianFactor* actual = dynamic_cast<JacobianFactor*>(linearized.get());
// Check cast result and then equality
EXPECT(assert_equal(expected, *actual, 1e-4));
}
/* ************************************************************************* */
@ -284,8 +333,8 @@ TEST( ImuFactor, ErrorAndJacobianWithBiases ) {
double deltaT = 1.0;
ImuFactor::PreintegratedMeasurements pre_int_data(
imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.1)),
Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero());
imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.1)), kMeasuredAccCovariance,
kMeasuredOmegaCovariance, kIntegrationErrorCovariance);
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// Create factor
@ -354,8 +403,8 @@ TEST( ImuFactor, ErrorAndJacobianWith2ndOrderCoriolis ) {
double deltaT = 1.0;
ImuFactor::PreintegratedMeasurements pre_int_data(
imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.1)),
Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero());
imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.1)), kMeasuredAccCovariance,
kMeasuredOmegaCovariance, kIntegrationErrorCovariance);
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
// Create factor
@ -874,8 +923,8 @@ TEST( ImuFactor, ErrorWithBiasesAndSensorBodyDisplacement ) {
Point3(1, 0, 0));
ImuFactor::PreintegratedMeasurements pre_int_data(
imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)),
Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero());
imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)), kMeasuredAccCovariance,
kMeasuredOmegaCovariance, kIntegrationErrorCovariance);
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
@ -933,8 +982,8 @@ TEST(ImuFactor, PredictPositionAndVelocity) {
I6x6 = Matrix::Identity(6, 6);
ImuFactor::PreintegratedMeasurements pre_int_data(
imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)),
Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), true);
imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)), kMeasuredAccCovariance,
kMeasuredOmegaCovariance, kIntegrationErrorCovariance, true);
for (int i = 0; i < 1000; ++i)
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);
@ -974,8 +1023,8 @@ TEST(ImuFactor, PredictRotation) {
I6x6 = Matrix::Identity(6, 6);
ImuFactor::PreintegratedMeasurements pre_int_data(
imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)),
Matrix3::Zero(), Matrix3::Zero(), Matrix3::Zero(), true);
imuBias::ConstantBias(Vector3(0.2, 0.0, 0.0), Vector3(0.0, 0.0, 0.0)), kMeasuredAccCovariance,
kMeasuredOmegaCovariance, kIntegrationErrorCovariance, true);
for (int i = 0; i < 1000; ++i)
pre_int_data.integrateMeasurement(measuredAcc, measuredOmega, deltaT);

View File

@ -32,7 +32,9 @@ namespace gtsam {
template<class T>
class ExpressionFactor: public NoiseModelFactor {
protected:
protected:
typedef ExpressionFactor<T> This;
T measurement_; ///< the measurement to be compared with the expression
Expression<T> expression_; ///< the expression that is AD enabled
@ -40,7 +42,9 @@ protected:
static const int Dim = traits<T>::dimension;
public:
public:
typedef boost::shared_ptr<ExpressionFactor<T> > shared_ptr;
/// Constructor
ExpressionFactor(const SharedNoiseModel& noiseModel, //
@ -106,6 +110,11 @@ public:
return factor;
}
/// @return a deep copy of this factor
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(
gtsam::NonlinearFactor::shared_ptr(new This(*this))); }
};
// ExpressionFactor

View File

@ -98,7 +98,7 @@ DoglegOptimizerImpl::TrustRegionAdaptationMode ISAM2DoglegParams::adaptationMode
}
/* ************************************************************************* */
ISAM2Params::Factorization ISAM2Params::factorizationTranslator(const std::string& str) const {
ISAM2Params::Factorization ISAM2Params::factorizationTranslator(const std::string& str) {
std::string s = str; boost::algorithm::to_upper(s);
if (s == "QR") return ISAM2Params::QR;
if (s == "CHOLESKY") return ISAM2Params::CHOLESKY;
@ -108,7 +108,7 @@ ISAM2Params::Factorization ISAM2Params::factorizationTranslator(const std::strin
}
/* ************************************************************************* */
std::string ISAM2Params::factorizationTranslator(const ISAM2Params::Factorization& value) const {
std::string ISAM2Params::factorizationTranslator(const ISAM2Params::Factorization& value) {
std::string s;
switch (value) {
case ISAM2Params::QR: s = "QR"; break;

View File

@ -186,6 +186,7 @@ struct GTSAM_EXPORT ISAM2Params {
enableDetailedResults(false), enablePartialRelinearizationCheck(false),
findUnusedFactorSlots(false) {}
/// print iSAM2 parameters
void print(const std::string& str = "") const {
std::cout << str << "\n";
if(optimizationParams.type() == typeid(ISAM2GaussNewtonParams))
@ -214,7 +215,9 @@ struct GTSAM_EXPORT ISAM2Params {
std::cout.flush();
}
/** Getters and Setters for all properties */
/// @name Getters and Setters for all properties
/// @{
OptimizationParams getOptimizationParams() const { return this->optimizationParams; }
RelinearizationThreshold getRelinearizeThreshold() const { return relinearizeThreshold; }
int getRelinearizeSkip() const { return relinearizeSkip; }
@ -237,14 +240,21 @@ struct GTSAM_EXPORT ISAM2Params {
void setEnableDetailedResults(bool enableDetailedResults) { this->enableDetailedResults = enableDetailedResults; }
void setEnablePartialRelinearizationCheck(bool enablePartialRelinearizationCheck) { this->enablePartialRelinearizationCheck = enablePartialRelinearizationCheck; }
Factorization factorizationTranslator(const std::string& str) const;
std::string factorizationTranslator(const Factorization& value) const;
GaussianFactorGraph::Eliminate getEliminationFunction() const {
return factorization == CHOLESKY
? (GaussianFactorGraph::Eliminate)EliminatePreferCholesky
: (GaussianFactorGraph::Eliminate)EliminateQR;
}
/// @}
/// @name Some utilities
/// @{
static Factorization factorizationTranslator(const std::string& str);
static std::string factorizationTranslator(const Factorization& value);
/// @}
};
@ -544,8 +554,15 @@ public:
boost::optional<std::vector<size_t>&> marginalFactorsIndices = boost::none,
boost::optional<std::vector<size_t>&> deletedFactorsIndices = boost::none);
/** Access the current linearization point */
const Values& getLinearizationPoint() const { return theta_; }
/// Access the current linearization point
const Values& getLinearizationPoint() const {
return theta_;
}
/// Check whether variable with given key exists in linearization point
bool valueExists(Key key) const {
return theta_.exists(key);
}
/** Compute an estimate from the incomplete linear delta computed during the last update.
* This delta is incomplete because it was not updated below wildfire_threshold. If only

View File

@ -21,21 +21,14 @@
#include <gtsam/base/Testable.h>
#include <gtsam/base/Manifold.h>
#include <boost/bind.hpp>
#include <limits>
#include <iostream>
#include <cmath>
namespace gtsam {
/**
* Template default compare function that assumes a testable T
*/
template<class T>
bool compare(const T& a, const T& b) {
GTSAM_CONCEPT_TESTABLE_TYPE(T);
return a.equals(b);
}
/**
* An equality factor that forces either one variable to a constant,
* or a set of variables to be equal to each other.
@ -76,7 +69,9 @@ public:
/**
* Function that compares two values
*/
bool (*compare_)(const T& a, const T& b);
typedef boost::function<bool(const T&, const T&)> CompareFunction;
CompareFunction compare_;
// bool (*compare_)(const T& a, const T& b);
/** default constructor - only for serialization */
NonlinearEquality() {
@ -92,7 +87,7 @@ public:
* Constructor - forces exact evaluation
*/
NonlinearEquality(Key j, const T& feasible,
bool (*_compare)(const T&, const T&) = compare<T>) :
const CompareFunction &_compare = boost::bind(traits<T>::Equals,_1,_2,1e-9)) :
Base(noiseModel::Constrained::All(traits<T>::GetDimension(feasible)),
j), feasible_(feasible), allow_error_(false), error_gain_(0.0), //
compare_(_compare) {
@ -102,7 +97,7 @@ public:
* Constructor - allows inexact evaluation
*/
NonlinearEquality(Key j, const T& feasible, double error_gain,
bool (*_compare)(const T&, const T&) = compare<T>) :
const CompareFunction &_compare = boost::bind(traits<T>::Equals,_1,_2,1e-9)) :
Base(noiseModel::Constrained::All(traits<T>::GetDimension(feasible)),
j), feasible_(feasible), allow_error_(true), error_gain_(error_gain), //
compare_(_compare) {
@ -122,7 +117,7 @@ public:
/** Check if two factors are equal */
virtual bool equals(const NonlinearFactor& f, double tol = 1e-9) const {
const This* e = dynamic_cast<const This*>(&f);
return e && Base::equals(f) && feasible_.equals(e->feasible_, tol)
return e && Base::equals(f) && traits<T>::Equals(feasible_,e->feasible_, tol)
&& std::abs(error_gain_ - e->error_gain_) < tol;
}

View File

@ -47,11 +47,12 @@ double NonlinearFactorGraph::probPrime(const Values& c) const {
/* ************************************************************************* */
void NonlinearFactorGraph::print(const std::string& str, const KeyFormatter& keyFormatter) const {
cout << str << "size: " << size() << endl;
cout << str << "size: " << size() << endl << endl;
for (size_t i = 0; i < factors_.size(); i++) {
stringstream ss;
ss << "factor " << i << ": ";
ss << "Factor " << i << ": ";
if (factors_[i] != NULL) factors_[i]->print(ss.str(), keyFormatter);
cout << endl;
}
}
@ -62,12 +63,12 @@ bool NonlinearFactorGraph::equals(const NonlinearFactorGraph& other, double tol)
/* ************************************************************************* */
void NonlinearFactorGraph::saveGraph(std::ostream &stm, const Values& values,
const GraphvizFormatting& graphvizFormatting,
const GraphvizFormatting& formatting,
const KeyFormatter& keyFormatter) const
{
stm << "graph {\n";
stm << " size=\"" << graphvizFormatting.figureWidthInches << "," <<
graphvizFormatting.figureHeightInches << "\";\n\n";
stm << " size=\"" << formatting.figureWidthInches << "," <<
formatting.figureHeightInches << "\";\n\n";
FastSet<Key> keys = this->keys();
@ -75,72 +76,38 @@ void NonlinearFactorGraph::saveGraph(std::ostream &stm, const Values& values,
struct { boost::optional<Point2> operator()(
const Value& value, const GraphvizFormatting& graphvizFormatting)
{
if(const Pose2* p = dynamic_cast<const Pose2*>(&value)) {
double x, y;
switch (graphvizFormatting.paperHorizontalAxis) {
case GraphvizFormatting::X: x = p->x(); break;
case GraphvizFormatting::Y: x = p->y(); break;
case GraphvizFormatting::Z: x = 0.0; break;
case GraphvizFormatting::NEGX: x = -p->x(); break;
case GraphvizFormatting::NEGY: x = -p->y(); break;
case GraphvizFormatting::NEGZ: x = 0.0; break;
default: throw std::runtime_error("Invalid enum value");
}
switch (graphvizFormatting.paperVerticalAxis) {
case GraphvizFormatting::X: y = p->x(); break;
case GraphvizFormatting::Y: y = p->y(); break;
case GraphvizFormatting::Z: y = 0.0; break;
case GraphvizFormatting::NEGX: y = -p->x(); break;
case GraphvizFormatting::NEGY: y = -p->y(); break;
case GraphvizFormatting::NEGZ: y = 0.0; break;
default: throw std::runtime_error("Invalid enum value");
}
return Point2(x,y);
} else if(const Pose3* p = dynamic_cast<const Pose3*>(&value)) {
double x, y;
switch (graphvizFormatting.paperHorizontalAxis) {
case GraphvizFormatting::X: x = p->x(); break;
case GraphvizFormatting::Y: x = p->y(); break;
case GraphvizFormatting::Z: x = p->z(); break;
case GraphvizFormatting::NEGX: x = -p->x(); break;
case GraphvizFormatting::NEGY: x = -p->y(); break;
case GraphvizFormatting::NEGZ: x = -p->z(); break;
default: throw std::runtime_error("Invalid enum value");
}
switch (graphvizFormatting.paperVerticalAxis) {
case GraphvizFormatting::X: y = p->x(); break;
case GraphvizFormatting::Y: y = p->y(); break;
case GraphvizFormatting::Z: y = p->z(); break;
case GraphvizFormatting::NEGX: y = -p->x(); break;
case GraphvizFormatting::NEGY: y = -p->y(); break;
case GraphvizFormatting::NEGZ: y = -p->z(); break;
default: throw std::runtime_error("Invalid enum value");
}
return Point2(x,y);
} else if(const Point3* p = dynamic_cast<const Point3*>(&value)) {
double x, y;
switch (graphvizFormatting.paperHorizontalAxis) {
case GraphvizFormatting::X: x = p->x(); break;
case GraphvizFormatting::Y: x = p->y(); break;
case GraphvizFormatting::Z: x = p->z(); break;
case GraphvizFormatting::NEGX: x = -p->x(); break;
case GraphvizFormatting::NEGY: x = -p->y(); break;
case GraphvizFormatting::NEGZ: x = -p->z(); break;
default: throw std::runtime_error("Invalid enum value");
}
switch (graphvizFormatting.paperVerticalAxis) {
case GraphvizFormatting::X: y = p->x(); break;
case GraphvizFormatting::Y: y = p->y(); break;
case GraphvizFormatting::Z: y = p->z(); break;
case GraphvizFormatting::NEGX: y = -p->x(); break;
case GraphvizFormatting::NEGY: y = -p->y(); break;
case GraphvizFormatting::NEGZ: y = -p->z(); break;
default: throw std::runtime_error("Invalid enum value");
}
return Point2(x,y);
Vector3 t;
if (const GenericValue<Pose2>* p = dynamic_cast<const GenericValue<Pose2>*>(&value)) {
t << p->value().x(), p->value().y(), 0;
} else if (const GenericValue<Point2>* p = dynamic_cast<const GenericValue<Point2>*>(&value)) {
t << p->value().x(), p->value().y(), 0;
} else if (const GenericValue<Pose3>* p = dynamic_cast<const GenericValue<Pose3>*>(&value)) {
t = p->value().translation().vector();
} else if (const GenericValue<Point3>* p = dynamic_cast<const GenericValue<Point3>*>(&value)) {
t = p->value().vector();
} else {
return boost::none;
}
double x, y;
switch (graphvizFormatting.paperHorizontalAxis) {
case GraphvizFormatting::X: x = t.x(); break;
case GraphvizFormatting::Y: x = t.y(); break;
case GraphvizFormatting::Z: x = t.z(); break;
case GraphvizFormatting::NEGX: x = -t.x(); break;
case GraphvizFormatting::NEGY: x = -t.y(); break;
case GraphvizFormatting::NEGZ: x = -t.z(); break;
default: throw std::runtime_error("Invalid enum value");
}
switch (graphvizFormatting.paperVerticalAxis) {
case GraphvizFormatting::X: y = t.x(); break;
case GraphvizFormatting::Y: y = t.y(); break;
case GraphvizFormatting::Z: y = t.z(); break;
case GraphvizFormatting::NEGX: y = -t.x(); break;
case GraphvizFormatting::NEGY: y = -t.y(); break;
case GraphvizFormatting::NEGZ: y = -t.z(); break;
default: throw std::runtime_error("Invalid enum value");
}
return Point2(x,y);
}} getXY;
// Find bounds
@ -148,7 +115,7 @@ void NonlinearFactorGraph::saveGraph(std::ostream &stm, const Values& values,
double minY = numeric_limits<double>::infinity(), maxY = -numeric_limits<double>::infinity();
BOOST_FOREACH(Key key, keys) {
if(values.exists(key)) {
boost::optional<Point2> xy = getXY(values.at(key), graphvizFormatting);
boost::optional<Point2> xy = getXY(values.at(key), formatting);
if(xy) {
if(xy->x() < minX)
minX = xy->x();
@ -163,33 +130,22 @@ void NonlinearFactorGraph::saveGraph(std::ostream &stm, const Values& values,
}
// Create nodes for each variable in the graph
bool firstTimePoses = true;
Key lastKey;
BOOST_FOREACH(Key key, keys) {
BOOST_FOREACH(Key key, keys){
// Label the node with the label from the KeyFormatter
stm << " var" << key << "[label=\"" << keyFormatter(key) << "\"";
if(values.exists(key)) {
boost::optional<Point2> xy = getXY(values.at(key), graphvizFormatting);
boost::optional<Point2> xy = getXY(values.at(key), formatting);
if(xy)
stm << ", pos=\"" << graphvizFormatting.scale*(xy->x() - minX) << "," << graphvizFormatting.scale*(xy->y() - minY) << "!\"";
stm << ", pos=\"" << formatting.scale*(xy->x() - minX) << "," << formatting.scale*(xy->y() - minY) << "!\"";
}
stm << "];\n";
if (firstTimePoses) {
lastKey = key;
firstTimePoses = false;
} else {
stm << " var" << key << "--" << "var" << lastKey << ";\n";
lastKey = key;
}
}
stm << "\n";
if(graphvizFormatting.mergeSimilarFactors) {
if (formatting.mergeSimilarFactors) {
// Remove duplicate factors
FastSet<vector<Key> > structure;
BOOST_FOREACH(const sharedFactor& factor, *this) {
BOOST_FOREACH(const sharedFactor& factor, *this){
if(factor) {
vector<Key> factorKeys = factor->keys();
std::sort(factorKeys.begin(), factorKeys.end());
@ -199,57 +155,65 @@ void NonlinearFactorGraph::saveGraph(std::ostream &stm, const Values& values,
// Create factors and variable connections
size_t i = 0;
BOOST_FOREACH(const vector<Key>& factorKeys, structure) {
BOOST_FOREACH(const vector<Key>& factorKeys, structure){
// Make each factor a dot
stm << " factor" << i << "[label=\"\", shape=point";
{
map<size_t, Point2>::const_iterator pos = graphvizFormatting.factorPositions.find(i);
if(pos != graphvizFormatting.factorPositions.end())
stm << ", pos=\"" << graphvizFormatting.scale*(pos->second.x() - minX) << "," << graphvizFormatting.scale*(pos->second.y() - minY) << "!\"";
map<size_t, Point2>::const_iterator pos = formatting.factorPositions.find(i);
if(pos != formatting.factorPositions.end())
stm << ", pos=\"" << formatting.scale*(pos->second.x() - minX) << ","
<< formatting.scale*(pos->second.y() - minY) << "!\"";
}
stm << "];\n";
// Make factor-variable connections
BOOST_FOREACH(Key key, factorKeys) {
stm << " var" << key << "--" << "factor" << i << ";\n"; }
stm << " var" << key << "--" << "factor" << i << ";\n";
}
++ i;
}
} else {
// Create factors and variable connections
for(size_t i = 0; i < this->size(); ++i) {
if(graphvizFormatting.plotFactorPoints){
// Make each factor a dot
stm << " factor" << i << "[label=\"\", shape=point";
{
map<size_t, Point2>::const_iterator pos = graphvizFormatting.factorPositions.find(i);
if(pos != graphvizFormatting.factorPositions.end())
stm << ", pos=\"" << graphvizFormatting.scale*(pos->second.x() - minX) << "," << graphvizFormatting.scale*(pos->second.y() - minY) << "!\"";
}
stm << "];\n";
const NonlinearFactor::shared_ptr& factor = this->at(i);
if(formatting.plotFactorPoints) {
const FastVector<Key>& keys = factor->keys();
if (formatting.binaryEdges && keys.size()==2) {
stm << " var" << keys[0] << "--" << "var" << keys[1] << ";\n";
} else {
// Make each factor a dot
stm << " factor" << i << "[label=\"\", shape=point";
{
map<size_t, Point2>::const_iterator pos = formatting.factorPositions.find(i);
if(pos != formatting.factorPositions.end())
stm << ", pos=\"" << formatting.scale*(pos->second.x() - minX) << ","
<< formatting.scale*(pos->second.y() - minY) << "!\"";
}
stm << "];\n";
// Make factor-variable connections
if(graphvizFormatting.connectKeysToFactor && this->at(i)) {
BOOST_FOREACH(Key key, *this->at(i)) {
stm << " var" << key << "--" << "factor" << i << ";\n";
// Make factor-variable connections
if(formatting.connectKeysToFactor && factor) {
BOOST_FOREACH(Key key, *factor) {
stm << " var" << key << "--" << "factor" << i << ";\n";
}
}
}
}
}
}
else {
if(this->at(i)) {
Key k;
bool firstTime = true;
BOOST_FOREACH(Key key, *this->at(i)) {
if(firstTime){
k = key;
firstTime = false;
continue;
if(factor) {
Key k;
bool firstTime = true;
BOOST_FOREACH(Key key, *this->at(i)) {
if(firstTime) {
k = key;
firstTime = false;
continue;
}
stm << " var" << key << "--" << "var" << k << ";\n";
k = key;
}
}
stm << " var" << key << "--" << "var" << k << ";\n";
k = key;
}
}
}
}
}

View File

@ -32,6 +32,10 @@ namespace gtsam {
class Ordering;
class GaussianFactorGraph;
class SymbolicFactorGraph;
template<typename T>
class Expression;
template<typename T>
class ExpressionFactor;
/**
* Formatting options when saving in GraphViz format using
@ -47,6 +51,7 @@ namespace gtsam {
bool mergeSimilarFactors; ///< Merge multiple factors that have the same connectivity
bool plotFactorPoints; ///< Plots each factor as a dot between the variables
bool connectKeysToFactor; ///< Draw a line from each key within a factor to the dot of the factor
bool binaryEdges; ///< just use non-dotted edges for binary factors
std::map<size_t, Point2> factorPositions; ///< (optional for each factor) Manually specify factor "dot" positions.
/// Default constructor sets up robot coordinates. Paper horizontal is robot Y,
/// paper vertical is robot X. Default figure size of 5x5 in.
@ -54,7 +59,7 @@ namespace gtsam {
paperHorizontalAxis(Y), paperVerticalAxis(X),
figureWidthInches(5), figureHeightInches(5), scale(1),
mergeSimilarFactors(false), plotFactorPoints(true),
connectKeysToFactor(true) {}
connectKeysToFactor(true), binaryEdges(true) {}
};
@ -150,6 +155,18 @@ namespace gtsam {
*/
NonlinearFactorGraph rekey(const std::map<Key,Key>& rekey_mapping) const;
/**
* Directly add ExpressionFactor that implements |h(x)-z|^2_R
* @param h expression that implements measurement function
* @param z measurement
* @param R model
*/
template<typename T>
void addExpressionFactor(const SharedNoiseModel& R, const T& z,
const Expression<T>& h) {
push_back(boost::make_shared<ExpressionFactor<T> >(R, z, h));
}
private:
/** Serialization function */

View File

@ -21,9 +21,9 @@
#include <gtsam/nonlinear/ExpressionFactor.h>
#include <gtsam/nonlinear/Expression.h>
#include <gtsam/nonlinear/factorTesting.h>
#include <gtsam/base/Matrix.h>
#include <gtsam/base/Testable.h>
#include <gtsam/base/numericalDerivative.h>
#include <gtsam/linear/VectorValues.h>
#include <CppUnitLite/TestResult.h>
@ -32,47 +32,6 @@
namespace gtsam {
/**
* Linearize a nonlinear factor using numerical differentiation
* The benefit of this method is that it does not need to know what types are
* involved to evaluate the factor. If all the machinery of gtsam is working
* correctly, we should get the correct numerical derivatives out the other side.
*/
JacobianFactor linearizeNumerically(const NoiseModelFactor& factor,
const Values& values, double delta = 1e-5) {
// We will fill a map of Jacobians
std::map<Key, Matrix> jacobians;
// Get size
Eigen::VectorXd e = factor.whitenedError(values);
const size_t rows = e.size();
// Loop over all variables
VectorValues dX = values.zeroVectors();
BOOST_FOREACH(Key key, factor) {
// Compute central differences using the values struct.
const size_t cols = dX.dim(key);
Matrix J = Matrix::Zero(rows, cols);
for (size_t col = 0; col < cols; ++col) {
Eigen::VectorXd dx = Eigen::VectorXd::Zero(cols);
dx[col] = delta;
dX[key] = dx;
Values eval_values = values.retract(dX);
Eigen::VectorXd left = factor.whitenedError(eval_values);
dx[col] = -delta;
dX[key] = dx;
eval_values = values.retract(dX);
Eigen::VectorXd right = factor.whitenedError(eval_values);
J.col(col) = (left - right) * (1.0 / (2.0 * delta));
}
jacobians[key] = J;
}
// Next step...return JacobianFactor
return JacobianFactor(jacobians, -e);
}
namespace internal {
// CPPUnitLite-style test for linearization of a factor
void testFactorJacobians(TestResult& result_, const std::string& name_,

View File

@ -18,6 +18,12 @@ Expression<T> between(const Expression<T>& t1, const Expression<T>& t2) {
return Expression<T>(traits<T>::Between, t1, t2);
}
// Generics
template<typename T>
Expression<T> compose(const Expression<T>& t1, const Expression<T>& t2) {
return Expression<T>(traits<T>::Compose, t1, t2);
}
typedef Expression<double> double_;
typedef Expression<Vector3> Vector3_;

View File

@ -0,0 +1,68 @@
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file factorTesting.h
* @date September 18, 2014
* @author Frank Dellaert
* @author Paul Furgale
* @brief Evaluate derivatives of a nonlinear factor numerically
*/
#pragma once
#include <gtsam/nonlinear/NonlinearFactor.h>
#include <gtsam/base/numericalDerivative.h>
namespace gtsam {
/**
* Linearize a nonlinear factor using numerical differentiation
* The benefit of this method is that it does not need to know what types are
* involved to evaluate the factor. If all the machinery of gtsam is working
* correctly, we should get the correct numerical derivatives out the other side.
*/
JacobianFactor linearizeNumerically(const NoiseModelFactor& factor,
const Values& values, double delta = 1e-5) {
// We will fill a vector of key/Jacobians pairs (a map would sort)
std::vector<std::pair<Key, Matrix> > jacobians;
// Get size
Eigen::VectorXd e = factor.whitenedError(values);
const size_t rows = e.size();
// Loop over all variables
VectorValues dX = values.zeroVectors();
BOOST_FOREACH(Key key, factor) {
// Compute central differences using the values struct.
const size_t cols = dX.dim(key);
Matrix J = Matrix::Zero(rows, cols);
for (size_t col = 0; col < cols; ++col) {
Eigen::VectorXd dx = Eigen::VectorXd::Zero(cols);
dx[col] = delta;
dX[key] = dx;
Values eval_values = values.retract(dX);
Eigen::VectorXd left = factor.whitenedError(eval_values);
dx[col] = -delta;
dX[key] = dx;
eval_values = values.retract(dX);
Eigen::VectorXd right = factor.whitenedError(eval_values);
J.col(col) = (left - right) * (1.0 / (2.0 * delta));
}
jacobians.push_back(std::make_pair(key,J));
}
// Next step...return JacobianFactor
return JacobianFactor(jacobians, -e);
}
} // namespace gtsam

View File

@ -22,6 +22,7 @@
#include <gtsam/slam/ProjectionFactor.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/nonlinear/ExpressionFactor.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/expressionTesting.h>
#include <gtsam/base/Testable.h>
@ -496,6 +497,11 @@ TEST(ExpressionFactor, tree_finite_differences) {
EXPECT_CORRECT_EXPRESSION_JACOBIANS(uv_hat, values, fd_step, tolerance);
}
TEST(ExpressionFactor, push_back) {
NonlinearFactorGraph graph;
graph.addExpressionFactor(model, Point2(0, 0), leaf::p);
}
/* ************************************************************************* */
int main() {
TestResult tr;

View File

@ -57,6 +57,11 @@ namespace gtsam {
Base(model, key), prior_(prior) {
}
/** Convenience constructor that takes a full covariance argument */
PriorFactor(Key key, const VALUE& prior, const Matrix& covariance) :
Base(noiseModel::Gaussian::Covariance(covariance), key), prior_(prior) {
}
/// @return a deep copy of this factor
virtual gtsam::NonlinearFactor::shared_ptr clone() const {
return boost::static_pointer_cast<gtsam::NonlinearFactor>(

View File

@ -64,8 +64,8 @@ string findExampleDataFile(const string& name) {
throw
invalid_argument(
"gtsam::findExampleDataFile could not find a matching file in\n"
SOURCE_TREE_DATASET_DIR " or\n"
INSTALLED_DATASET_DIR " named\n" +
GTSAM_SOURCE_TREE_DATASET_DIR " or\n"
GTSAM_INSTALLED_DATASET_DIR " named\n" +
name + ", " + name + ".graph, or " + name + ".txt");
}

View File

@ -28,25 +28,34 @@
namespace gtsam {
/* ************************************************************************* */
void BatchFixedLagSmoother::print(const std::string& s, const KeyFormatter& keyFormatter) const {
void BatchFixedLagSmoother::print(const std::string& s,
const KeyFormatter& keyFormatter) const {
FixedLagSmoother::print(s, keyFormatter);
// TODO: What else to print?
}
/* ************************************************************************* */
bool BatchFixedLagSmoother::equals(const FixedLagSmoother& rhs, double tol) const {
const BatchFixedLagSmoother* e = dynamic_cast<const BatchFixedLagSmoother*> (&rhs);
return e != NULL
&& FixedLagSmoother::equals(*e, tol)
&& factors_.equals(e->factors_, tol)
&& theta_.equals(e->theta_, tol);
bool BatchFixedLagSmoother::equals(const FixedLagSmoother& rhs,
double tol) const {
const BatchFixedLagSmoother* e =
dynamic_cast<const BatchFixedLagSmoother*>(&rhs);
return e != NULL && FixedLagSmoother::equals(*e, tol)
&& factors_.equals(e->factors_, tol) && theta_.equals(e->theta_, tol);
}
/* ************************************************************************* */
FixedLagSmoother::Result BatchFixedLagSmoother::update(const NonlinearFactorGraph& newFactors, const Values& newTheta, const KeyTimestampMap& timestamps) {
Matrix BatchFixedLagSmoother::marginalCovariance(Key key) const {
throw std::runtime_error(
"BatchFixedLagSmoother::marginalCovariance not implemented");
}
/* ************************************************************************* */
FixedLagSmoother::Result BatchFixedLagSmoother::update(
const NonlinearFactorGraph& newFactors, const Values& newTheta,
const KeyTimestampMap& timestamps) {
const bool debug = ISDEBUG("BatchFixedLagSmoother update");
if(debug) {
if (debug) {
std::cout << "BatchFixedLagSmoother::update() START" << std::endl;
}
@ -70,11 +79,13 @@ FixedLagSmoother::Result BatchFixedLagSmoother::update(const NonlinearFactorGrap
// Get current timestamp
double current_timestamp = getCurrentTimestamp();
if(debug) std::cout << "Current Timestamp: " << current_timestamp << std::endl;
if (debug)
std::cout << "Current Timestamp: " << current_timestamp << std::endl;
// Find the set of variables to be marginalized out
std::set<Key> marginalizableKeys = findKeysBefore(current_timestamp - smootherLag_);
if(debug) {
std::set<Key> marginalizableKeys = findKeysBefore(
current_timestamp - smootherLag_);
if (debug) {
std::cout << "Marginalizable Keys: ";
BOOST_FOREACH(Key key, marginalizableKeys) {
std::cout << DefaultKeyFormatter(key) << " ";
@ -90,19 +101,19 @@ FixedLagSmoother::Result BatchFixedLagSmoother::update(const NonlinearFactorGrap
// Optimize
gttic(optimize);
Result result;
if(factors_.size() > 0) {
if (factors_.size() > 0) {
result = optimize();
}
gttoc(optimize);
// Marginalize out old variables.
gttic(marginalize);
if(marginalizableKeys.size() > 0) {
if (marginalizableKeys.size() > 0) {
marginalize(marginalizableKeys);
}
gttoc(marginalize);
if(debug) {
if (debug) {
std::cout << "BatchFixedLagSmoother::update() FINISH" << std::endl;
}
@ -110,11 +121,12 @@ FixedLagSmoother::Result BatchFixedLagSmoother::update(const NonlinearFactorGrap
}
/* ************************************************************************* */
void BatchFixedLagSmoother::insertFactors(const NonlinearFactorGraph& newFactors) {
void BatchFixedLagSmoother::insertFactors(
const NonlinearFactorGraph& newFactors) {
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, newFactors) {
Key index;
// Insert the factor into an existing hole in the factor graph, if possible
if(availableSlots_.size() > 0) {
if (availableSlots_.size() > 0) {
index = availableSlots_.front();
availableSlots_.pop();
factors_.replace(index, factor);
@ -130,9 +142,10 @@ void BatchFixedLagSmoother::insertFactors(const NonlinearFactorGraph& newFactors
}
/* ************************************************************************* */
void BatchFixedLagSmoother::removeFactors(const std::set<size_t>& deleteFactors) {
void BatchFixedLagSmoother::removeFactors(
const std::set<size_t>& deleteFactors) {
BOOST_FOREACH(size_t slot, deleteFactors) {
if(factors_.at(slot)) {
if (factors_.at(slot)) {
// Remove references to this factor from the FactorIndex
BOOST_FOREACH(Key key, *(factors_.at(slot))) {
factorIndex_[key].erase(slot);
@ -143,7 +156,8 @@ void BatchFixedLagSmoother::removeFactors(const std::set<size_t>& deleteFactors)
availableSlots_.push(slot);
} else {
// TODO: Throw an error??
std::cout << "Attempting to remove a factor from slot " << slot << ", but it is already NULL." << std::endl;
std::cout << "Attempting to remove a factor from slot " << slot
<< ", but it is already NULL." << std::endl;
}
}
}
@ -159,7 +173,7 @@ void BatchFixedLagSmoother::eraseKeys(const std::set<Key>& keys) {
factorIndex_.erase(key);
// Erase the key from the set of linearized keys
if(linearKeys_.exists(key)) {
if (linearKeys_.exists(key)) {
linearKeys_.erase(key);
}
}
@ -178,11 +192,11 @@ void BatchFixedLagSmoother::reorder(const std::set<Key>& marginalizeKeys) {
const bool debug = ISDEBUG("BatchFixedLagSmoother reorder");
if(debug) {
if (debug) {
std::cout << "BatchFixedLagSmoother::reorder() START" << std::endl;
}
if(debug) {
if (debug) {
std::cout << "Marginalizable Keys: ";
BOOST_FOREACH(Key key, marginalizeKeys) {
std::cout << DefaultKeyFormatter(key) << " ";
@ -191,13 +205,14 @@ void BatchFixedLagSmoother::reorder(const std::set<Key>& marginalizeKeys) {
}
// COLAMD groups will be used to place marginalize keys in Group 0, and everything else in Group 1
ordering_ = Ordering::colamdConstrainedFirst(factors_, std::vector<Key>(marginalizeKeys.begin(), marginalizeKeys.end()));
ordering_ = Ordering::colamdConstrainedFirst(factors_,
std::vector<Key>(marginalizeKeys.begin(), marginalizeKeys.end()));
if(debug) {
if (debug) {
ordering_.print("New Ordering: ");
}
if(debug) {
if (debug) {
std::cout << "BatchFixedLagSmoother::reorder() FINISH" << std::endl;
}
}
@ -207,7 +222,7 @@ FixedLagSmoother::Result BatchFixedLagSmoother::optimize() {
const bool debug = ISDEBUG("BatchFixedLagSmoother optimize");
if(debug) {
if (debug) {
std::cout << "BatchFixedLagSmoother::optimize() START" << std::endl;
}
@ -231,14 +246,19 @@ FixedLagSmoother::Result BatchFixedLagSmoother::optimize() {
result.error = factors_.error(evalpoint);
// check if we're already close enough
if(result.error <= errorTol) {
if(debug) { std::cout << "BatchFixedLagSmoother::optimize Exiting, as error = " << result.error << " < " << errorTol << std::endl; }
if (result.error <= errorTol) {
if (debug) {
std::cout << "BatchFixedLagSmoother::optimize Exiting, as error = "
<< result.error << " < " << errorTol << std::endl;
}
return result;
}
if(debug) {
std::cout << "BatchFixedLagSmoother::optimize linearValues: " << linearKeys_.size() << std::endl;
std::cout << "BatchFixedLagSmoother::optimize Initial error: " << result.error << std::endl;
if (debug) {
std::cout << "BatchFixedLagSmoother::optimize linearValues: "
<< linearKeys_.size() << std::endl;
std::cout << "BatchFixedLagSmoother::optimize Initial error: "
<< result.error << std::endl;
}
// Use a custom optimization loop so the linearization points can be controlled
@ -254,9 +274,12 @@ FixedLagSmoother::Result BatchFixedLagSmoother::optimize() {
GaussianFactorGraph linearFactorGraph = *factors_.linearize(theta_);
// Keep increasing lambda until we make make progress
while(true) {
while (true) {
if(debug) { std::cout << "BatchFixedLagSmoother::optimize trying lambda = " << lambda << std::endl; }
if (debug) {
std::cout << "BatchFixedLagSmoother::optimize trying lambda = "
<< lambda << std::endl;
}
// Add prior factors at the current solution
gttic(damp);
@ -267,10 +290,11 @@ FixedLagSmoother::Result BatchFixedLagSmoother::optimize() {
double sigma = 1.0 / std::sqrt(lambda);
BOOST_FOREACH(const VectorValues::KeyValuePair& key_value, delta_) {
size_t dim = key_value.second.size();
Matrix A = Matrix::Identity(dim,dim);
Matrix A = Matrix::Identity(dim, dim);
Vector b = key_value.second;
SharedDiagonal model = noiseModel::Isotropic::Sigma(dim, sigma);
GaussianFactor::shared_ptr prior(new JacobianFactor(key_value.first, A, b, model));
GaussianFactor::shared_ptr prior(
new JacobianFactor(key_value.first, A, b, model));
dampedFactorGraph.push_back(prior);
}
}
@ -279,7 +303,8 @@ FixedLagSmoother::Result BatchFixedLagSmoother::optimize() {
gttic(solve);
// Solve Damped Gaussian Factor Graph
newDelta = dampedFactorGraph.optimize(ordering_, parameters_.getEliminationFunction());
newDelta = dampedFactorGraph.optimize(ordering_,
parameters_.getEliminationFunction());
// update the evalpoint with the new delta
evalpoint = theta_.retract(newDelta);
gttoc(solve);
@ -289,12 +314,14 @@ FixedLagSmoother::Result BatchFixedLagSmoother::optimize() {
double error = factors_.error(evalpoint);
gttoc(compute_error);
if(debug) {
std::cout << "BatchFixedLagSmoother::optimize linear delta norm = " << newDelta.norm() << std::endl;
std::cout << "BatchFixedLagSmoother::optimize next error = " << error << std::endl;
if (debug) {
std::cout << "BatchFixedLagSmoother::optimize linear delta norm = "
<< newDelta.norm() << std::endl;
std::cout << "BatchFixedLagSmoother::optimize next error = " << error
<< std::endl;
}
if(error < result.error) {
if (error < result.error) {
// Keep this change
// Update the error value
result.error = error;
@ -303,7 +330,7 @@ FixedLagSmoother::Result BatchFixedLagSmoother::optimize() {
// Reset the deltas to zeros
delta_.setZero();
// Put the linearization points and deltas back for specific variables
if(enforceConsistency_ && (linearKeys_.size() > 0)) {
if (enforceConsistency_ && (linearKeys_.size() > 0)) {
theta_.update(linearKeys_);
BOOST_FOREACH(const Values::ConstKeyValuePair& key_value, linearKeys_) {
delta_.at(key_value.key) = newDelta.at(key_value.key);
@ -311,16 +338,18 @@ FixedLagSmoother::Result BatchFixedLagSmoother::optimize() {
}
// Decrease lambda for next time
lambda /= lambdaFactor;
if(lambda < lambdaLowerBound) {
if (lambda < lambdaLowerBound) {
lambda = lambdaLowerBound;
}
// End this lambda search iteration
break;
} else {
// Reject this change
if(lambda >= lambdaUpperBound) {
if (lambda >= lambdaUpperBound) {
// The maximum lambda has been used. Print a warning and end the search.
std::cout << "Warning: Levenberg-Marquardt giving up because cannot decrease error with maximum lambda" << std::endl;
std::cout
<< "Warning: Levenberg-Marquardt giving up because cannot decrease error with maximum lambda"
<< std::endl;
break;
} else {
// Increase lambda and continue searching
@ -331,15 +360,22 @@ FixedLagSmoother::Result BatchFixedLagSmoother::optimize() {
}
gttoc(optimizer_iteration);
if(debug) { std::cout << "BatchFixedLagSmoother::optimize using lambda = " << lambda << std::endl; }
if (debug) {
std::cout << "BatchFixedLagSmoother::optimize using lambda = " << lambda
<< std::endl;
}
result.iterations++;
} while(result.iterations < maxIterations &&
!checkConvergence(relativeErrorTol, absoluteErrorTol, errorTol, previousError, result.error, NonlinearOptimizerParams::SILENT));
} while (result.iterations < maxIterations
&& !checkConvergence(relativeErrorTol, absoluteErrorTol, errorTol,
previousError, result.error, NonlinearOptimizerParams::SILENT));
if(debug) { std::cout << "BatchFixedLagSmoother::optimize newError: " << result.error << std::endl; }
if (debug) {
std::cout << "BatchFixedLagSmoother::optimize newError: " << result.error
<< std::endl;
}
if(debug) {
if (debug) {
std::cout << "BatchFixedLagSmoother::optimize() FINISH" << std::endl;
}
@ -356,9 +392,10 @@ void BatchFixedLagSmoother::marginalize(const std::set<Key>& marginalizeKeys) {
const bool debug = ISDEBUG("BatchFixedLagSmoother marginalize");
if(debug) std::cout << "BatchFixedLagSmoother::marginalize Begin" << std::endl;
if (debug)
std::cout << "BatchFixedLagSmoother::marginalize Begin" << std::endl;
if(debug) {
if (debug) {
std::cout << "BatchFixedLagSmoother::marginalize Marginalize Keys: ";
BOOST_FOREACH(Key key, marginalizeKeys) {
std::cout << DefaultKeyFormatter(key) << " ";
@ -374,7 +411,7 @@ void BatchFixedLagSmoother::marginalize(const std::set<Key>& marginalizeKeys) {
removedFactorSlots.insert(slots.begin(), slots.end());
}
if(debug) {
if (debug) {
std::cout << "BatchFixedLagSmoother::marginalize Removed Factor Slots: ";
BOOST_FOREACH(size_t slot, removedFactorSlots) {
std::cout << slot << " ";
@ -385,20 +422,24 @@ void BatchFixedLagSmoother::marginalize(const std::set<Key>& marginalizeKeys) {
// Add the removed factors to a factor graph
NonlinearFactorGraph removedFactors;
BOOST_FOREACH(size_t slot, removedFactorSlots) {
if(factors_.at(slot)) {
if (factors_.at(slot)) {
removedFactors.push_back(factors_.at(slot));
}
}
if(debug) {
PrintSymbolicGraph(removedFactors, "BatchFixedLagSmoother::marginalize Removed Factors: ");
if (debug) {
PrintSymbolicGraph(removedFactors,
"BatchFixedLagSmoother::marginalize Removed Factors: ");
}
// Calculate marginal factors on the remaining keys
NonlinearFactorGraph marginalFactors = calculateMarginalFactors(removedFactors, theta_, marginalizeKeys, parameters_.getEliminationFunction());
NonlinearFactorGraph marginalFactors = calculateMarginalFactors(
removedFactors, theta_, marginalizeKeys,
parameters_.getEliminationFunction());
if(debug) {
PrintSymbolicGraph(removedFactors, "BatchFixedLagSmoother::marginalize Marginal Factors: ");
if (debug) {
PrintSymbolicGraph(removedFactors,
"BatchFixedLagSmoother::marginalize Marginal Factors: ");
}
// Remove marginalized factors from the factor graph
@ -412,7 +453,8 @@ void BatchFixedLagSmoother::marginalize(const std::set<Key>& marginalizeKeys) {
}
/* ************************************************************************* */
void BatchFixedLagSmoother::PrintKeySet(const std::set<Key>& keys, const std::string& label) {
void BatchFixedLagSmoother::PrintKeySet(const std::set<Key>& keys,
const std::string& label) {
std::cout << label;
BOOST_FOREACH(gtsam::Key key, keys) {
std::cout << " " << gtsam::DefaultKeyFormatter(key);
@ -421,7 +463,8 @@ void BatchFixedLagSmoother::PrintKeySet(const std::set<Key>& keys, const std::st
}
/* ************************************************************************* */
void BatchFixedLagSmoother::PrintKeySet(const gtsam::FastSet<Key>& keys, const std::string& label) {
void BatchFixedLagSmoother::PrintKeySet(const gtsam::FastSet<Key>& keys,
const std::string& label) {
std::cout << label;
BOOST_FOREACH(gtsam::Key key, keys) {
std::cout << " " << gtsam::DefaultKeyFormatter(key);
@ -430,9 +473,10 @@ void BatchFixedLagSmoother::PrintKeySet(const gtsam::FastSet<Key>& keys, const s
}
/* ************************************************************************* */
void BatchFixedLagSmoother::PrintSymbolicFactor(const NonlinearFactor::shared_ptr& factor) {
void BatchFixedLagSmoother::PrintSymbolicFactor(
const NonlinearFactor::shared_ptr& factor) {
std::cout << "f(";
if(factor) {
if (factor) {
BOOST_FOREACH(Key key, factor->keys()) {
std::cout << " " << gtsam::DefaultKeyFormatter(key);
}
@ -443,7 +487,8 @@ void BatchFixedLagSmoother::PrintSymbolicFactor(const NonlinearFactor::shared_pt
}
/* ************************************************************************* */
void BatchFixedLagSmoother::PrintSymbolicFactor(const GaussianFactor::shared_ptr& factor) {
void BatchFixedLagSmoother::PrintSymbolicFactor(
const GaussianFactor::shared_ptr& factor) {
std::cout << "f(";
BOOST_FOREACH(Key key, factor->keys()) {
std::cout << " " << gtsam::DefaultKeyFormatter(key);
@ -452,7 +497,8 @@ void BatchFixedLagSmoother::PrintSymbolicFactor(const GaussianFactor::shared_ptr
}
/* ************************************************************************* */
void BatchFixedLagSmoother::PrintSymbolicGraph(const NonlinearFactorGraph& graph, const std::string& label) {
void BatchFixedLagSmoother::PrintSymbolicGraph(
const NonlinearFactorGraph& graph, const std::string& label) {
std::cout << label << std::endl;
BOOST_FOREACH(const NonlinearFactor::shared_ptr& factor, graph) {
PrintSymbolicFactor(factor);
@ -460,59 +506,79 @@ void BatchFixedLagSmoother::PrintSymbolicGraph(const NonlinearFactorGraph& graph
}
/* ************************************************************************* */
void BatchFixedLagSmoother::PrintSymbolicGraph(const GaussianFactorGraph& graph, const std::string& label) {
void BatchFixedLagSmoother::PrintSymbolicGraph(const GaussianFactorGraph& graph,
const std::string& label) {
std::cout << label << std::endl;
BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, graph) {
PrintSymbolicFactor(factor);
}
}
/* ************************************************************************* */
NonlinearFactorGraph BatchFixedLagSmoother::calculateMarginalFactors(const NonlinearFactorGraph& graph, const Values& theta,
const std::set<Key>& marginalizeKeys, const GaussianFactorGraph::Eliminate& eliminateFunction) {
NonlinearFactorGraph BatchFixedLagSmoother::calculateMarginalFactors(
const NonlinearFactorGraph& graph, const Values& theta,
const std::set<Key>& marginalizeKeys,
const GaussianFactorGraph::Eliminate& eliminateFunction) {
const bool debug = ISDEBUG("BatchFixedLagSmoother calculateMarginalFactors");
if(debug) std::cout << "BatchFixedLagSmoother::calculateMarginalFactors START" << std::endl;
if (debug)
std::cout << "BatchFixedLagSmoother::calculateMarginalFactors START"
<< std::endl;
if(debug) PrintKeySet(marginalizeKeys, "BatchFixedLagSmoother::calculateMarginalFactors Marginalize Keys: ");
if (debug)
PrintKeySet(marginalizeKeys,
"BatchFixedLagSmoother::calculateMarginalFactors Marginalize Keys: ");
// Get the set of all keys involved in the factor graph
FastSet<Key> allKeys(graph.keys());
if(debug) PrintKeySet(allKeys, "BatchFixedLagSmoother::calculateMarginalFactors All Keys: ");
if (debug)
PrintKeySet(allKeys,
"BatchFixedLagSmoother::calculateMarginalFactors All Keys: ");
// Calculate the set of RemainingKeys = AllKeys \Intersect marginalizeKeys
FastSet<Key> remainingKeys;
std::set_difference(allKeys.begin(), allKeys.end(), marginalizeKeys.begin(), marginalizeKeys.end(), std::inserter(remainingKeys, remainingKeys.end()));
if(debug) PrintKeySet(remainingKeys, "BatchFixedLagSmoother::calculateMarginalFactors Remaining Keys: ");
std::set_difference(allKeys.begin(), allKeys.end(), marginalizeKeys.begin(),
marginalizeKeys.end(), std::inserter(remainingKeys, remainingKeys.end()));
if (debug)
PrintKeySet(remainingKeys,
"BatchFixedLagSmoother::calculateMarginalFactors Remaining Keys: ");
if(marginalizeKeys.size() == 0) {
if (marginalizeKeys.size() == 0) {
// There are no keys to marginalize. Simply return the input factors
if(debug) std::cout << "BatchFixedLagSmoother::calculateMarginalFactors FINISH" << std::endl;
if (debug)
std::cout << "BatchFixedLagSmoother::calculateMarginalFactors FINISH"
<< std::endl;
return graph;
} else {
// Create the linear factor graph
GaussianFactorGraph linearFactorGraph = *graph.linearize(theta);
// .first is the eliminated Bayes tree, while .second is the remaining factor graph
GaussianFactorGraph marginalLinearFactors = *linearFactorGraph.eliminatePartialMultifrontal(std::vector<Key>(marginalizeKeys.begin(), marginalizeKeys.end())).second;
GaussianFactorGraph marginalLinearFactors =
*linearFactorGraph.eliminatePartialMultifrontal(
std::vector<Key>(marginalizeKeys.begin(), marginalizeKeys.end())).second;
// Wrap in nonlinear container factors
NonlinearFactorGraph marginalFactors;
marginalFactors.reserve(marginalLinearFactors.size());
BOOST_FOREACH(const GaussianFactor::shared_ptr& gaussianFactor, marginalLinearFactors) {
marginalFactors += boost::make_shared<LinearContainerFactor>(gaussianFactor, theta);
if(debug) {
std::cout << "BatchFixedLagSmoother::calculateMarginalFactors Marginal Factor: ";
marginalFactors += boost::make_shared<LinearContainerFactor>(
gaussianFactor, theta);
if (debug) {
std::cout
<< "BatchFixedLagSmoother::calculateMarginalFactors Marginal Factor: ";
PrintSymbolicFactor(marginalFactors.back());
}
}
if(debug) PrintSymbolicGraph(marginalFactors, "BatchFixedLagSmoother::calculateMarginalFactors All Marginal Factors: ");
if (debug)
PrintSymbolicGraph(marginalFactors,
"BatchFixedLagSmoother::calculateMarginalFactors All Marginal Factors: ");
if(debug) std::cout << "BatchFixedLagSmoother::calculateMarginalFactors FINISH" << std::endl;
if (debug)
std::cout << "BatchFixedLagSmoother::calculateMarginalFactors FINISH"
<< std::endl;
return marginalFactors;
}

View File

@ -100,6 +100,12 @@ public:
return delta_;
}
/// Calculate marginal covariance on given variable
Matrix marginalCovariance(Key key) const;
static NonlinearFactorGraph calculateMarginalFactors(const NonlinearFactorGraph& graph, const Values& theta,
const std::set<Key>& marginalizeKeys, const GaussianFactorGraph::Eliminate& eliminateFunction);
protected:
/** A typedef defining an Key-Factor mapping **/
@ -134,8 +140,6 @@ protected:
/** A cross-reference structure to allow efficient factor lookups by key **/
FactorIndex factorIndex_;
/** Augment the list of factors with a set of new factors */
void insertFactors(const NonlinearFactorGraph& newFactors);
@ -154,9 +158,6 @@ protected:
/** Marginalize out selected variables */
void marginalize(const std::set<Key>& marginalizableKeys);
static NonlinearFactorGraph calculateMarginalFactors(const NonlinearFactorGraph& graph, const Values& theta,
const std::set<Key>& marginalizeKeys, const GaussianFactorGraph::Eliminate& eliminateFunction);
private:
/** Private methods for printing debug information */
static void PrintKeySet(const std::set<Key>& keys, const std::string& label);

View File

@ -37,7 +37,7 @@ bool FixedLagSmoother::equals(const FixedLagSmoother& rhs, double tol) const {
void FixedLagSmoother::updateKeyTimestampMap(const KeyTimestampMap& timestamps) {
// Loop through each key and add/update it in the map
BOOST_FOREACH(const KeyTimestampMap::value_type& key_timestamp, timestamps) {
// Check to see if this key already exists inthe database
// Check to see if this key already exists in the database
KeyTimestampMap::iterator keyIter = keyTimestampMap_.find(key_timestamp.first);
// If the key already exists

View File

@ -25,10 +25,13 @@
namespace gtsam {
/* ************************************************************************* */
void recursiveMarkAffectedKeys(const Key& key, const ISAM2Clique::shared_ptr& clique, std::set<Key>& additionalKeys) {
void recursiveMarkAffectedKeys(const Key& key,
const ISAM2Clique::shared_ptr& clique, std::set<Key>& additionalKeys) {
// Check if the separator keys of the current clique contain the specified key
if(std::find(clique->conditional()->beginParents(), clique->conditional()->endParents(), key) != clique->conditional()->endParents()) {
if (std::find(clique->conditional()->beginParents(),
clique->conditional()->endParents(), key)
!= clique->conditional()->endParents()) {
// Mark the frontal keys of the current clique
BOOST_FOREACH(Key i, clique->conditional()->frontals()) {
@ -44,32 +47,36 @@ void recursiveMarkAffectedKeys(const Key& key, const ISAM2Clique::shared_ptr& cl
}
/* ************************************************************************* */
void IncrementalFixedLagSmoother::print(const std::string& s, const KeyFormatter& keyFormatter) const {
void IncrementalFixedLagSmoother::print(const std::string& s,
const KeyFormatter& keyFormatter) const {
FixedLagSmoother::print(s, keyFormatter);
// TODO: What else to print?
}
/* ************************************************************************* */
bool IncrementalFixedLagSmoother::equals(const FixedLagSmoother& rhs, double tol) const {
const IncrementalFixedLagSmoother* e = dynamic_cast<const IncrementalFixedLagSmoother*> (&rhs);
return e != NULL
&& FixedLagSmoother::equals(*e, tol)
bool IncrementalFixedLagSmoother::equals(const FixedLagSmoother& rhs,
double tol) const {
const IncrementalFixedLagSmoother* e =
dynamic_cast<const IncrementalFixedLagSmoother*>(&rhs);
return e != NULL && FixedLagSmoother::equals(*e, tol)
&& isam_.equals(e->isam_, tol);
}
/* ************************************************************************* */
FixedLagSmoother::Result IncrementalFixedLagSmoother::update(const NonlinearFactorGraph& newFactors, const Values& newTheta, const KeyTimestampMap& timestamps) {
FixedLagSmoother::Result IncrementalFixedLagSmoother::update(
const NonlinearFactorGraph& newFactors, const Values& newTheta,
const KeyTimestampMap& timestamps) {
const bool debug = ISDEBUG("IncrementalFixedLagSmoother update");
if(debug) {
if (debug) {
std::cout << "IncrementalFixedLagSmoother::update() Start" << std::endl;
PrintSymbolicTree(isam_, "Bayes Tree Before Update:");
std::cout << "END" << std::endl;
}
FastVector<size_t> removedFactors;
boost::optional<FastMap<Key,int> > constrainedKeys = boost::none;
boost::optional<FastMap<Key, int> > constrainedKeys = boost::none;
// Update the Timestamps associated with the factor keys
updateKeyTimestampMap(timestamps);
@ -77,12 +84,14 @@ FixedLagSmoother::Result IncrementalFixedLagSmoother::update(const NonlinearFact
// Get current timestamp
double current_timestamp = getCurrentTimestamp();
if(debug) std::cout << "Current Timestamp: " << current_timestamp << std::endl;
if (debug)
std::cout << "Current Timestamp: " << current_timestamp << std::endl;
// Find the set of variables to be marginalized out
std::set<Key> marginalizableKeys = findKeysBefore(current_timestamp - smootherLag_);
std::set<Key> marginalizableKeys = findKeysBefore(
current_timestamp - smootherLag_);
if(debug) {
if (debug) {
std::cout << "Marginalizable Keys: ";
BOOST_FOREACH(Key key, marginalizableKeys) {
std::cout << DefaultKeyFormatter(key) << " ";
@ -93,11 +102,13 @@ FixedLagSmoother::Result IncrementalFixedLagSmoother::update(const NonlinearFact
// Force iSAM2 to put the marginalizable variables at the beginning
createOrderingConstraints(marginalizableKeys, constrainedKeys);
if(debug) {
if (debug) {
std::cout << "Constrained Keys: ";
if(constrainedKeys) {
for(FastMap<Key,int>::const_iterator iter = constrainedKeys->begin(); iter != constrainedKeys->end(); ++iter) {
std::cout << DefaultKeyFormatter(iter->first) << "(" << iter->second << ") ";
if (constrainedKeys) {
for (FastMap<Key, int>::const_iterator iter = constrainedKeys->begin();
iter != constrainedKeys->end(); ++iter) {
std::cout << DefaultKeyFormatter(iter->first) << "(" << iter->second
<< ") ";
}
}
std::cout << std::endl;
@ -114,23 +125,26 @@ FixedLagSmoother::Result IncrementalFixedLagSmoother::update(const NonlinearFact
KeyList additionalMarkedKeys(additionalKeys.begin(), additionalKeys.end());
// Update iSAM2
ISAM2Result isamResult = isam_.update(newFactors, newTheta, FastVector<size_t>(), constrainedKeys, boost::none, additionalMarkedKeys);
ISAM2Result isamResult = isam_.update(newFactors, newTheta,
FastVector<size_t>(), constrainedKeys, boost::none, additionalMarkedKeys);
if(debug) {
PrintSymbolicTree(isam_, "Bayes Tree After Update, Before Marginalization:");
if (debug) {
PrintSymbolicTree(isam_,
"Bayes Tree After Update, Before Marginalization:");
std::cout << "END" << std::endl;
}
// Marginalize out any needed variables
if(marginalizableKeys.size() > 0) {
FastList<Key> leafKeys(marginalizableKeys.begin(), marginalizableKeys.end());
if (marginalizableKeys.size() > 0) {
FastList<Key> leafKeys(marginalizableKeys.begin(),
marginalizableKeys.end());
isam_.marginalizeLeaves(leafKeys);
}
// Remove marginalized keys from the KeyTimestampMap
eraseKeyTimestampMap(marginalizableKeys);
if(debug) {
if (debug) {
PrintSymbolicTree(isam_, "Final Bayes Tree:");
std::cout << "END" << std::endl;
}
@ -142,7 +156,8 @@ FixedLagSmoother::Result IncrementalFixedLagSmoother::update(const NonlinearFact
result.nonlinearVariables = 0;
result.error = 0;
if(debug) std::cout << "IncrementalFixedLagSmoother::update() Finish" << std::endl;
if (debug)
std::cout << "IncrementalFixedLagSmoother::update() Finish" << std::endl;
return result;
}
@ -151,30 +166,33 @@ FixedLagSmoother::Result IncrementalFixedLagSmoother::update(const NonlinearFact
void IncrementalFixedLagSmoother::eraseKeysBefore(double timestamp) {
TimestampKeyMap::iterator end = timestampKeyMap_.lower_bound(timestamp);
TimestampKeyMap::iterator iter = timestampKeyMap_.begin();
while(iter != end) {
while (iter != end) {
keyTimestampMap_.erase(iter->second);
timestampKeyMap_.erase(iter++);
}
}
/* ************************************************************************* */
void IncrementalFixedLagSmoother::createOrderingConstraints(const std::set<Key>& marginalizableKeys, boost::optional<FastMap<Key,int> >& constrainedKeys) const {
if(marginalizableKeys.size() > 0) {
constrainedKeys = FastMap<Key,int>();
void IncrementalFixedLagSmoother::createOrderingConstraints(
const std::set<Key>& marginalizableKeys,
boost::optional<FastMap<Key, int> >& constrainedKeys) const {
if (marginalizableKeys.size() > 0) {
constrainedKeys = FastMap<Key, int>();
// Generate ordering constraints so that the marginalizable variables will be eliminated first
// Set all variables to Group1
BOOST_FOREACH(const TimestampKeyMap::value_type& timestamp_key, timestampKeyMap_) {
constrainedKeys->operator[](timestamp_key.second) = 1;
}
// Set marginalizable variables to Group0
BOOST_FOREACH(Key key, marginalizableKeys){
BOOST_FOREACH(Key key, marginalizableKeys) {
constrainedKeys->operator[](key) = 0;
}
}
}
/* ************************************************************************* */
void IncrementalFixedLagSmoother::PrintKeySet(const std::set<Key>& keys, const std::string& label) {
void IncrementalFixedLagSmoother::PrintKeySet(const std::set<Key>& keys,
const std::string& label) {
std::cout << label;
BOOST_FOREACH(gtsam::Key key, keys) {
std::cout << " " << gtsam::DefaultKeyFormatter(key);
@ -183,7 +201,8 @@ void IncrementalFixedLagSmoother::PrintKeySet(const std::set<Key>& keys, const s
}
/* ************************************************************************* */
void IncrementalFixedLagSmoother::PrintSymbolicFactor(const GaussianFactor::shared_ptr& factor) {
void IncrementalFixedLagSmoother::PrintSymbolicFactor(
const GaussianFactor::shared_ptr& factor) {
std::cout << "f(";
BOOST_FOREACH(gtsam::Key key, factor->keys()) {
std::cout << " " << gtsam::DefaultKeyFormatter(key);
@ -192,7 +211,8 @@ void IncrementalFixedLagSmoother::PrintSymbolicFactor(const GaussianFactor::shar
}
/* ************************************************************************* */
void IncrementalFixedLagSmoother::PrintSymbolicGraph(const GaussianFactorGraph& graph, const std::string& label) {
void IncrementalFixedLagSmoother::PrintSymbolicGraph(
const GaussianFactorGraph& graph, const std::string& label) {
std::cout << label << std::endl;
BOOST_FOREACH(const GaussianFactor::shared_ptr& factor, graph) {
PrintSymbolicFactor(factor);
@ -200,27 +220,28 @@ void IncrementalFixedLagSmoother::PrintSymbolicGraph(const GaussianFactorGraph&
}
/* ************************************************************************* */
void IncrementalFixedLagSmoother::PrintSymbolicTree(const gtsam::ISAM2& isam, const std::string& label) {
void IncrementalFixedLagSmoother::PrintSymbolicTree(const gtsam::ISAM2& isam,
const std::string& label) {
std::cout << label << std::endl;
if(!isam.roots().empty())
{
BOOST_FOREACH(const ISAM2::sharedClique& root, isam.roots()){
PrintSymbolicTreeHelper(root);
if (!isam.roots().empty()) {
BOOST_FOREACH(const ISAM2::sharedClique& root, isam.roots()) {
PrintSymbolicTreeHelper(root);
}
}
else
} else
std::cout << "{Empty Tree}" << std::endl;
}
/* ************************************************************************* */
void IncrementalFixedLagSmoother::PrintSymbolicTreeHelper(const gtsam::ISAM2Clique::shared_ptr& clique, const std::string indent) {
void IncrementalFixedLagSmoother::PrintSymbolicTreeHelper(
const gtsam::ISAM2Clique::shared_ptr& clique, const std::string indent) {
// Print the current clique
std::cout << indent << "P( ";
BOOST_FOREACH(gtsam::Key key, clique->conditional()->frontals()) {
std::cout << gtsam::DefaultKeyFormatter(key) << " ";
}
if(clique->conditional()->nrParents() > 0) std::cout << "| ";
if (clique->conditional()->nrParents() > 0)
std::cout << "| ";
BOOST_FOREACH(gtsam::Key key, clique->conditional()->parents()) {
std::cout << gtsam::DefaultKeyFormatter(key) << " ";
}
@ -228,7 +249,7 @@ void IncrementalFixedLagSmoother::PrintSymbolicTreeHelper(const gtsam::ISAM2Cliq
// Recursively print all of the children
BOOST_FOREACH(const gtsam::ISAM2Clique::shared_ptr& child, clique->children) {
PrintSymbolicTreeHelper(child, indent+" ");
PrintSymbolicTreeHelper(child, indent + " ");
}
}

View File

@ -23,7 +23,6 @@
#include <gtsam_unstable/nonlinear/FixedLagSmoother.h>
#include <gtsam/nonlinear/ISAM2.h>
namespace gtsam {
/**
@ -31,7 +30,7 @@ namespace gtsam {
* such that the active states are placed in/near the root. This base class implements a function
* to calculate the ordering, and an update function to incorporate new factors into the HMF.
*/
class GTSAM_UNSTABLE_EXPORT IncrementalFixedLagSmoother : public FixedLagSmoother {
class GTSAM_UNSTABLE_EXPORT IncrementalFixedLagSmoother: public FixedLagSmoother {
public:
@ -39,20 +38,30 @@ public:
typedef boost::shared_ptr<IncrementalFixedLagSmoother> shared_ptr;
/** default constructor */
IncrementalFixedLagSmoother(double smootherLag = 0.0, const ISAM2Params& parameters = ISAM2Params())
: FixedLagSmoother(smootherLag), isam_(parameters) {}
IncrementalFixedLagSmoother(double smootherLag = 0.0,
const ISAM2Params& parameters = ISAM2Params()) :
FixedLagSmoother(smootherLag), isam_(parameters) {
}
/** destructor */
virtual ~IncrementalFixedLagSmoother() {}
virtual ~IncrementalFixedLagSmoother() {
}
/** Print the factor for debugging and testing (implementing Testable) */
virtual void print(const std::string& s = "IncrementalFixedLagSmoother:\n", const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
virtual void print(const std::string& s = "IncrementalFixedLagSmoother:\n",
const KeyFormatter& keyFormatter = DefaultKeyFormatter) const;
/** Check if two IncrementalFixedLagSmoother Objects are equal */
virtual bool equals(const FixedLagSmoother& rhs, double tol = 1e-9) const;
/** Add new factors, updating the solution and relinearizing as needed. */
Result update(const NonlinearFactorGraph& newFactors = NonlinearFactorGraph(), const Values& newTheta = Values(),
/**
* Add new factors, updating the solution and re-linearizing as needed.
* @param newFactors new factors on old and/or new variables
* @param newTheta new values for new variables only
* @param timestamps an (optional) map from keys to real time stamps
*/
Result update(const NonlinearFactorGraph& newFactors = NonlinearFactorGraph(),
const Values& newTheta = Values(), //
const KeyTimestampMap& timestamps = KeyTimestampMap());
/** Compute an estimate from the incomplete linear delta computed during the last update.
@ -94,6 +103,11 @@ public:
return isam_.getDelta();
}
/// Calculate marginal covariance on given variable
Matrix marginalCovariance(Key key) const {
return isam_.marginalCovariance(key);
}
protected:
/** An iSAM2 object used to perform inference. The smoother lag is controlled
* by what factors are removed each iteration */
@ -103,16 +117,23 @@ protected:
void eraseKeysBefore(double timestamp);
/** Fill in an iSAM2 ConstrainedKeys structure such that the provided keys are eliminated before all others */
void createOrderingConstraints(const std::set<Key>& marginalizableKeys, boost::optional<FastMap<Key,int> >& constrainedKeys) const;
void createOrderingConstraints(const std::set<Key>& marginalizableKeys,
boost::optional<FastMap<Key, int> >& constrainedKeys) const;
private:
/** Private methods for printing debug information */
static void PrintKeySet(const std::set<Key>& keys, const std::string& label = "Keys:");
static void PrintKeySet(const std::set<Key>& keys, const std::string& label =
"Keys:");
static void PrintSymbolicFactor(const GaussianFactor::shared_ptr& factor);
static void PrintSymbolicGraph(const GaussianFactorGraph& graph, const std::string& label = "Factor Graph:");
static void PrintSymbolicTree(const gtsam::ISAM2& isam, const std::string& label = "Bayes Tree:");
static void PrintSymbolicTreeHelper(const gtsam::ISAM2Clique::shared_ptr& clique, const std::string indent = "");
static void PrintSymbolicGraph(const GaussianFactorGraph& graph,
const std::string& label = "Factor Graph:");
static void PrintSymbolicTree(const gtsam::ISAM2& isam,
const std::string& label = "Bayes Tree:");
static void PrintSymbolicTreeHelper(
const gtsam::ISAM2Clique::shared_ptr& clique, const std::string indent =
"");
}; // IncrementalFixedLagSmoother
};
// IncrementalFixedLagSmoother
} /// namespace gtsam
}/// namespace gtsam

View File

@ -17,19 +17,20 @@
*/
#include <CppUnitLite/TestHarness.h>
#include <gtsam_unstable/nonlinear/IncrementalFixedLagSmoother.h>
#include <gtsam/base/debug.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/inference/Key.h>
#include <gtsam/inference/Ordering.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/slam/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/geometry/Point2.h>
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
#include <gtsam/linear/GaussianBayesNet.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/inference/Key.h>
#include <gtsam/inference/Ordering.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/base/debug.h>
#include <CppUnitLite/TestHarness.h>
using namespace std;
using namespace gtsam;

View File

@ -73,6 +73,7 @@ TEST( InvDepthFactorVariant1, optimize) {
// Optimize the graph to recover the actual landmark position
LevenbergMarquardtParams params;
Values result = LevenbergMarquardtOptimizer(graph, values, params).optimize();
// Vector6 actual = result.at<Vector6>(landmarkKey);
// values.at<Pose3>(poseKey1).print("Pose1 Before:\n");
// result.at<Pose3>(poseKey1).print("Pose1 After:\n");
@ -114,8 +115,11 @@ TEST( InvDepthFactorVariant1, optimize) {
// However, since this is an over-parameterization, there can be
// many 6D landmark values that equate to the same 3D world position
// Instead, directly test the recovered 3D landmark position
//EXPECT(assert_equal(expected, actual, 1e-9));
EXPECT(assert_equal(landmark, world_landmarkAfter, 1e-9));
// Frank asks: why commented out?
//Vector6 actual = result.at<Vector6>(landmarkKey);
//EXPECT(assert_equal(expected, actual, 1e-9));
}