A first implementation of noiseModel and covariance

release/4.3a0
Frank Dellaert 2015-12-29 09:03:13 -08:00
parent 610cd5f1d3
commit 0dfd44f26c
3 changed files with 52 additions and 14 deletions

View File

@ -38,7 +38,6 @@ static const Matrix36 acc_H_bias = (Matrix36() << I_3x3, Z_3x3).finished();
static const Matrix36 omega_H_bias = (Matrix36() << Z_3x3, I_3x3).finished();
Vector9 PreintegratedMeasurements2::currentEstimate() const {
// TODO(frank): make faster version just for theta
VectorValues biasValues;
biasValues.insert(kBiasKey, estimatedBias_.vector());
VectorValues zetaValues = posterior_k_->optimize(biasValues);
@ -47,6 +46,14 @@ Vector9 PreintegratedMeasurements2::currentEstimate() const {
return zeta;
}
Vector3 PreintegratedMeasurements2::currentTheta() const {
// TODO(frank): make faster version theta = inv(R)*d
VectorValues biasValues;
biasValues.insert(kBiasKey, estimatedBias_.vector());
VectorValues zetaValues = posterior_k_->optimize(biasValues);
return zetaValues.at(T(k_));
}
PreintegratedMeasurements2::SharedBayesNet
PreintegratedMeasurements2::initPosterior(const Vector3& correctedAcc,
const Vector3& correctedOmega,
@ -73,7 +80,7 @@ PreintegratedMeasurements2::initPosterior(const Vector3& correctedAcc,
// eliminate all but biases
// NOTE(frank): After this, posterior_k_ contains P(zeta(1)|bias)
Ordering keys = list_of(P(k_ + 1))(V(k_ + 1))(T(k_ + 1));
Ordering keys = list_of(T(k_ + 1))(P(k_ + 1))(V(k_ + 1));
return graph.eliminatePartialSequential(keys, EliminateQR).first;
}
@ -85,10 +92,8 @@ PreintegratedMeasurements2::integrateCorrected(const Vector3& correctedAcc,
GaussianFactorGraph graph;
// estimate current estimate from posterior
// TODO(frank): maybe we should store this - or only recover theta = inv(R)*d
Vector9 zeta = currentEstimate();
Vector3 theta_k = zeta.head<3>();
// estimate current theta from posterior
Vector3 theta_k = currentTheta();
Rot3 Rk = Rot3::Expmap(theta_k);
Matrix3 Rkt = Rk.transpose();
@ -119,12 +124,14 @@ PreintegratedMeasurements2::integrateCorrected(const Vector3& correctedAcc,
correctedAcc * dt, accelerometerNoiseModel_);
// eliminate all but biases
Ordering keys = list_of(P(k_))(V(k_))(T(k_))(P(k_ + 1))(V(k_ + 1))(T(k_ + 1));
// TODO(frank): does not seem to eliminate in order I want. What gives?
Ordering keys = list_of(T(k_))(P(k_))(V(k_))(T(k_ + 1))(P(k_ + 1))(V(k_ + 1));
SharedBayesNet bayesNet =
graph.eliminatePartialSequential(keys, EliminateQR).first;
// The Bayes net now contains P(zeta(k)|zeta(k+1),bias) P(zeta(k+1)|bias)
// We marginalize zeta(k) by removing the conditionals on zeta(k)
// TODO(frank): could use erase(begin, begin+3) if order above was correct
SharedBayesNet marginal = boost::make_shared<GaussianBayesNet>();
for (const auto& conditional : *bayesNet) {
Symbol symbol(conditional->front());
@ -156,17 +163,40 @@ void PreintegratedMeasurements2::integrateMeasurement(
NavState PreintegratedMeasurements2::predict(
const NavState& state_i, const imuBias::ConstantBias& bias_i,
OptionalJacobian<9, 9> H1, OptionalJacobian<9, 6> H2) const {
// Get mean of current posterior on zeta
// TODO(frank): handle bias
Vector9 zeta = currentEstimate();
// Correct for initial velocity and gravity
Rot3 Ri = state_i.attitude();
Matrix3 Rit = Ri.transpose();
Vector3 gt = deltaTij_ * p_->n_gravity;
zeta.segment<3>(3) +=
Rit * (state_i.velocity() * deltaTij_ + 0.5 * deltaTij_ * gt);
zeta.segment<3>(6) += Rit * gt;
// Convert local coordinates to manifold near state_i
return state_i.retract(zeta);
}
SharedGaussian PreintegratedMeasurements2::noiseModel() const {
Matrix RS;
Vector d;
GTSAM_PRINT(*posterior_k_);
boost::tie(RS, d) = posterior_k_->matrix();
cout << RS << endl
<< endl;
cout << d.transpose() << endl;
// R'*R = A'*A = inv(Cov)
// TODO(frank): think of a faster way - implement in noiseModel
return noiseModel::Gaussian::SqrtInformation(RS.block<9, 9>(0, 0), false);
}
Matrix9 PreintegratedMeasurements2::preintMeasCov() const {
return noiseModel()->covariance();
}
////////////////////////////////////////////////////////////////////////////////////////////
static double intNoiseVar = 0.0000001;

View File

@ -80,9 +80,20 @@ class PreintegratedMeasurements2 {
OptionalJacobian<9, 9> H1 = boost::none,
OptionalJacobian<9, 6> H2 = boost::none) const;
Matrix9 preintMeasCov() const { return Matrix9::Zero(); }
/// Return Gaussian noise model on prediction
SharedGaussian noiseModel() const;
/// @deprecated: Explicitly calculate covariance
Matrix9 preintMeasCov() const;
private:
// estimate zeta given estimated biases
// calculates conditional mean of P(zeta|bias_delta)
Vector9 currentEstimate() const;
// estimate theta given estimated biases
Vector3 currentTheta() const;
// initialize posterior with first (corrected) IMU measurement
SharedBayesNet initPosterior(const Vector3& correctedAcc,
const Vector3& correctedOmega, double dt) const;
@ -92,9 +103,6 @@ class PreintegratedMeasurements2 {
const Vector3& correctedOmega,
double dt) const;
// estimate zeta given estimated biases
// calculates conditional mean of P(zeta|bias_delta)
Vector9 currentEstimate() const;
};
/*

View File

@ -47,13 +47,13 @@ TEST(ScenarioRunner, Spin) {
const ExpmapScenario scenario(W, V);
ScenarioRunner runner(&scenario, defaultParams(), kDeltaT);
const double T = 0.1; // seconds
const double T = 0.5; // seconds
auto pim = runner.integrate(T);
EXPECT(assert_equal(scenario.pose(T), runner.predict(pim).pose(), 1e-9));
// Matrix6 estimatedCov = runner.estimatePoseCovariance(T);
// EXPECT(assert_equal(estimatedCov, runner.poseCovariance(pim), 1e-5));
Matrix6 estimatedCov = runner.estimatePoseCovariance(T);
EXPECT(assert_equal(estimatedCov, runner.poseCovariance(pim), 1e-5));
}
/* ************************************************************************* */