fixed unit test on findMinimumSpanningTree
parent
313e3168a6
commit
0d957084c0
|
@ -91,13 +91,13 @@ SDGraph<KEY> toBoostGraph(const G& graph) {
|
|||
|
||||
if (key2vertex.find(key1) == key2vertex.end()) {
|
||||
v1 = add_vertex(key1, g);
|
||||
key2vertex.insert(make_pair(key1, v1));
|
||||
key2vertex.insert(std::pair<KEY,KEY>(key1, v1));
|
||||
} else
|
||||
v1 = key2vertex[key1];
|
||||
|
||||
if (key2vertex.find(key2) == key2vertex.end()) {
|
||||
v2 = add_vertex(key2, g);
|
||||
key2vertex.insert(make_pair(key2, v2));
|
||||
key2vertex.insert(std::pair<KEY,KEY>(key2, v2));
|
||||
} else
|
||||
v2 = key2vertex[key2];
|
||||
|
||||
|
|
|
@ -18,7 +18,10 @@
|
|||
|
||||
#include <gtsam/slam/BetweenFactor.h>
|
||||
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
|
||||
#include <gtsam/linear/GaussianFactorGraph.h>
|
||||
#include <gtsam/linear/JacobianFactor.h>
|
||||
#include <gtsam/inference/graph.h>
|
||||
#include <gtsam/inference/Symbol.h>
|
||||
#include <gtsam/geometry/Pose2.h>
|
||||
|
||||
#include <CppUnitLite/TestHarness.h>
|
||||
|
@ -105,24 +108,41 @@ TEST( Graph, composePoses )
|
|||
CHECK(assert_equal(expected, *actual));
|
||||
}
|
||||
|
||||
// SL-FIX TEST( GaussianFactorGraph, findMinimumSpanningTree )
|
||||
//{
|
||||
// GaussianFactorGraph g;
|
||||
// Matrix I = eye(2);
|
||||
// Vector b = Vector_(0, 0, 0);
|
||||
// g += X(1), I, X(2), I, b, model;
|
||||
// g += X(1), I, X(3), I, b, model;
|
||||
// g += X(1), I, X(4), I, b, model;
|
||||
// g += X(2), I, X(3), I, b, model;
|
||||
// g += X(2), I, X(4), I, b, model;
|
||||
// g += X(3), I, X(4), I, b, model;
|
||||
//
|
||||
// map<string, string> tree = g.findMinimumSpanningTree<string, GaussianFactor>();
|
||||
// EXPECT(tree[X(1)].compare(X(1))==0);
|
||||
// EXPECT(tree[X(2)].compare(X(1))==0);
|
||||
// EXPECT(tree[X(3)].compare(X(1))==0);
|
||||
// EXPECT(tree[X(4)].compare(X(1))==0);
|
||||
//}
|
||||
///* ************************************************************************* */
|
||||
// A linear factor implementing the functions key1 and key2
|
||||
// needed for findMinimumSpanningTree
|
||||
class Factor2 : public JacobianFactor {
|
||||
public:
|
||||
|
||||
/** Construct binary factor */
|
||||
Factor2(Key i1, const Matrix& A1, Key i2, const Matrix& A2, const Vector& b,
|
||||
const SharedDiagonal& model = SharedDiagonal()) :
|
||||
JacobianFactor(i1, A1, i2, A2, b, model) {
|
||||
}
|
||||
Key key1() const {return keys_[0];}
|
||||
Key key2() const {return keys_[1];}
|
||||
};
|
||||
|
||||
TEST( GaussianFactorGraph, findMinimumSpanningTree )
|
||||
{
|
||||
GaussianFactorGraph g;
|
||||
Matrix I = eye(2);
|
||||
Vector2 b(0, 0);
|
||||
const SharedDiagonal model = noiseModel::Diagonal::Sigmas((Vector(2) << 0.5, 0.5));
|
||||
using namespace symbol_shorthand;
|
||||
g += Factor2(X(1), I, X(2), I, b, model);
|
||||
g += Factor2(X(1), I, X(3), I, b, model);
|
||||
g += Factor2(X(1), I, X(4), I, b, model);
|
||||
g += Factor2(X(2), I, X(3), I, b, model);
|
||||
g += Factor2(X(2), I, X(4), I, b, model);
|
||||
g += Factor2(X(3), I, X(4), I, b, model);
|
||||
|
||||
PredecessorMap<Key> tree = findMinimumSpanningTree<GaussianFactorGraph, Key, Factor2>(g);
|
||||
EXPECT_LONGS_EQUAL(tree[X(1)], X(1));
|
||||
EXPECT_LONGS_EQUAL(tree[X(2)], X(1));
|
||||
EXPECT_LONGS_EQUAL(tree[X(3)], X(1));
|
||||
EXPECT_LONGS_EQUAL(tree[X(4)], X(1));
|
||||
}
|
||||
|
||||
///* ************************************************************************* */
|
||||
// SL-FIX TEST( GaussianFactorGraph, split )
|
||||
|
|
Loading…
Reference in New Issue