Merge pull request #2014 from borglab/feature/new_city10000

City1000 script
release/4.3a0
Frank Dellaert 2025-01-31 00:01:31 -05:00 committed by GitHub
commit 0d4b0d76d9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
17 changed files with 541 additions and 252 deletions

View File

@ -39,181 +39,276 @@ using namespace std;
using namespace gtsam; using namespace gtsam;
using namespace boost::algorithm; using namespace boost::algorithm;
using symbol_shorthand::L;
using symbol_shorthand::M; using symbol_shorthand::M;
using symbol_shorthand::X; using symbol_shorthand::X;
// Testing params const size_t kMaxLoopCount = 2000; // Example default value
const size_t max_loop_count = 2000; // 2000; // 200 //2000 //8000 const size_t kMaxNrHypotheses = 10;
noiseModel::Diagonal::shared_ptr prior_noise_model = auto kOpenLoopModel = noiseModel::Diagonal::Sigmas(Vector3::Ones() * 10);
noiseModel::Diagonal::Sigmas(
auto kPriorNoiseModel = noiseModel::Diagonal::Sigmas(
(Vector(3) << 0.0001, 0.0001, 0.0001).finished()); (Vector(3) << 0.0001, 0.0001, 0.0001).finished());
noiseModel::Diagonal::shared_ptr pose_noise_model = auto kPoseNoiseModel = noiseModel::Diagonal::Sigmas(
noiseModel::Diagonal::Sigmas(
(Vector(3) << 1.0 / 30.0, 1.0 / 30.0, 1.0 / 100.0).finished()); (Vector(3) << 1.0 / 30.0, 1.0 / 30.0, 1.0 / 100.0).finished());
/** // Experiment Class
* @brief Write the results of optimization to filename. class Experiment {
private:
std::string filename_;
HybridSmoother smoother_;
HybridNonlinearFactorGraph graph_;
Values initial_;
Values result_;
/**
* @brief Write the result of optimization to file.
* *
* @param results The Values object with the final results. * @param result The Values object with the final result.
* @param num_poses The number of poses to write to the file. * @param num_poses The number of poses to write to the file.
* @param filename The file name to save the results to. * @param filename The file name to save the result to.
*/ */
void write_results(const Values& results, size_t num_poses, void writeResult(const Values& result, size_t numPoses,
const std::string& filename = "ISAM2_city10000.txt") { const std::string& filename = "Hybrid_city10000.txt") {
ofstream outfile; ofstream outfile;
outfile.open(filename); outfile.open(filename);
for (size_t i = 0; i < num_poses; ++i) { for (size_t i = 0; i < numPoses; ++i) {
Pose2 out_pose = results.at<Pose2>(X(i)); Pose2 outPose = result.at<Pose2>(X(i));
outfile << outPose.x() << " " << outPose.y() << " " << outPose.theta()
outfile << out_pose.x() << " " << out_pose.y() << " " << out_pose.theta()
<< std::endl; << std::endl;
} }
outfile.close(); outfile.close();
std::cout << "output written to " << filename << std::endl; std::cout << "Output written to " << filename << std::endl;
} }
void SmootherUpdate(HybridSmoother& smoother, HybridNonlinearFactorGraph& graph, /**
const Values& initial, size_t maxNrHypotheses, * @brief Create a hybrid loop closure factor where
Values* results) { * 0 - loose noise model and 1 - loop noise model.
*/
HybridNonlinearFactor hybridLoopClosureFactor(size_t loopCounter, size_t keyS,
size_t keyT,
const Pose2& measurement) {
DiscreteKey l(L(loopCounter), 2);
auto f0 = std::make_shared<BetweenFactor<Pose2>>(
X(keyS), X(keyT), measurement, kOpenLoopModel);
auto f1 = std::make_shared<BetweenFactor<Pose2>>(
X(keyS), X(keyT), measurement, kPoseNoiseModel);
std::vector<NonlinearFactorValuePair> factors{
{f0, kOpenLoopModel->negLogConstant()},
{f1, kPoseNoiseModel->negLogConstant()}};
HybridNonlinearFactor mixtureFactor(l, factors);
return mixtureFactor;
}
/// @brief Create hybrid odometry factor with discrete measurement choices.
HybridNonlinearFactor hybridOdometryFactor(
size_t numMeasurements, size_t keyS, size_t keyT, const DiscreteKey& m,
const std::vector<Pose2>& poseArray,
const SharedNoiseModel& poseNoiseModel) {
auto f0 = std::make_shared<BetweenFactor<Pose2>>(
X(keyS), X(keyT), poseArray[0], poseNoiseModel);
auto f1 = std::make_shared<BetweenFactor<Pose2>>(
X(keyS), X(keyT), poseArray[1], poseNoiseModel);
std::vector<NonlinearFactorValuePair> factors{{f0, 0.0}, {f1, 0.0}};
HybridNonlinearFactor mixtureFactor(m, factors);
return mixtureFactor;
}
/// @brief Perform smoother update and optimize the graph.
void smootherUpdate(HybridSmoother& smoother,
HybridNonlinearFactorGraph& graph, const Values& initial,
size_t kMaxNrHypotheses, Values* result) {
HybridGaussianFactorGraph linearized = *graph.linearize(initial); HybridGaussianFactorGraph linearized = *graph.linearize(initial);
// std::cout << "index: " << index << std::endl; smoother.update(linearized, kMaxNrHypotheses);
smoother.update(linearized, maxNrHypotheses); // throw if x0 not in hybridBayesNet_:
const KeySet& keys = smoother.hybridBayesNet().keys();
if (keys.find(X(0)) == keys.end()) {
throw std::runtime_error("x0 not in hybridBayesNet_");
}
graph.resize(0); graph.resize(0);
HybridValues delta = smoother.hybridBayesNet().optimize(); // HybridValues delta = smoother.hybridBayesNet().optimize();
results->insert_or_assign(initial.retract(delta.continuous())); // result->insert_or_assign(initial.retract(delta.continuous()));
} }
/* ************************************************************************* */ public:
int main(int argc, char* argv[]) { /// Construct with filename of experiment to run
ifstream in(findExampleDataFile("T1_city10000_04.txt")); explicit Experiment(const std::string& filename)
// ifstream in("../data/mh_T1_city10000_04.txt"); //Type #1 only : filename_(filename), smoother_(0.99) {}
// ifstream in("../data/mh_T3b_city10000_10.txt"); //Type #3 only
// ifstream in("../data/mh_T1_T3_city10000_04.txt"); //Type #1 + Type #3
// ifstream in("../data/mh_All_city10000_groundtruth.txt"); /// @brief Run the main experiment with a given maxLoopCount.
void run(size_t maxLoopCount) {
// Prepare reading
ifstream in(filename_);
if (!in.is_open()) {
cerr << "Failed to open file: " << filename_ << endl;
return;
}
size_t discrete_count = 0, index = 0; // Initialize local variables
size_t discreteCount = 0, index = 0;
size_t loopCount = 0;
std::list<double> time_list; std::list<double> timeList;
HybridSmoother smoother(0.99);
HybridNonlinearFactorGraph graph;
Values init_values;
Values results;
size_t maxNrHypotheses = 3;
// Set up initial prior
double x = 0.0; double x = 0.0;
double y = 0.0; double y = 0.0;
double rad = 0.0; double rad = 0.0;
Pose2 prior_pose(x, y, rad); Pose2 priorPose(x, y, rad);
initial_.insert(X(0), priorPose);
graph_.push_back(PriorFactor<Pose2>(X(0), priorPose, kPriorNoiseModel));
init_values.insert(X(0), prior_pose); // Initial update
clock_t beforeUpdate = clock();
smootherUpdate(smoother_, graph_, initial_, kMaxNrHypotheses, &result_);
clock_t afterUpdate = clock();
std::vector<std::pair<size_t, double>> smootherUpdateTimes;
smootherUpdateTimes.push_back({index, afterUpdate - beforeUpdate});
graph.push_back(PriorFactor<Pose2>(X(0), prior_pose, prior_noise_model)); // Start main loop
size_t keyS = 0, keyT = 0;
clock_t startTime = clock();
std::string line;
while (getline(in, line) && index < maxLoopCount) {
std::vector<std::string> parts;
split(parts, line, is_any_of(" "));
SmootherUpdate(smoother, graph, init_values, maxNrHypotheses, &results); keyS = stoi(parts[1]);
keyT = stoi(parts[3]);
size_t key_s, key_t{0}; int numMeasurements = stoi(parts[5]);
std::vector<Pose2> poseArray(numMeasurements);
clock_t start_time = clock(); for (int i = 0; i < numMeasurements; ++i) {
std::string str;
while (getline(in, str) && index < max_loop_count) {
vector<string> parts;
split(parts, str, is_any_of(" "));
key_s = stoi(parts[1]);
key_t = stoi(parts[3]);
int num_measurements = stoi(parts[5]);
vector<Pose2> pose_array(num_measurements);
for (int i = 0; i < num_measurements; ++i) {
x = stod(parts[6 + 3 * i]); x = stod(parts[6 + 3 * i]);
y = stod(parts[7 + 3 * i]); y = stod(parts[7 + 3 * i]);
rad = stod(parts[8 + 3 * i]); rad = stod(parts[8 + 3 * i]);
pose_array[i] = Pose2(x, y, rad); poseArray[i] = Pose2(x, y, rad);
} }
// Flag to decide whether to run smoother update
bool doSmootherUpdate = false;
// Take the first one as the initial estimate // Take the first one as the initial estimate
Pose2 odom_pose = pose_array[0]; Pose2 odomPose = poseArray[0];
if (key_s == key_t - 1) { // new X(key) if (keyS == keyT - 1) {
init_values.insert(X(key_t), init_values.at<Pose2>(X(key_s)) * odom_pose); // Odometry factor
if (numMeasurements > 1) {
} else { // loop // Add hybrid factor
// index++; DiscreteKey m(M(discreteCount), numMeasurements);
} HybridNonlinearFactor mixtureFactor = hybridOdometryFactor(
numMeasurements, keyS, keyT, m, poseArray, kPoseNoiseModel);
// Flag if we should run smoother update graph_.push_back(mixtureFactor);
bool smoother_update = false; discreteCount++;
doSmootherUpdate = true;
if (num_measurements == 2) { std::cout << "mixtureFactor: " << keyS << " " << keyT << std::endl;
// Add hybrid factor which considers both measurements
DiscreteKey m(M(discrete_count), num_measurements);
discrete_count++;
graph.push_back(DecisionTreeFactor(m, "0.6 0.4"));
auto f0 = std::make_shared<BetweenFactor<Pose2>>(
X(key_s), X(key_t), pose_array[0], pose_noise_model);
auto f1 = std::make_shared<BetweenFactor<Pose2>>(
X(key_s), X(key_t), pose_array[1], pose_noise_model);
std::vector<NonlinearFactorValuePair> factors{{f0, 0.0}, {f1, 0.0}};
// HybridNonlinearFactor mixtureFactor(m, factors);
HybridNonlinearFactor mixtureFactor(m, {f0, f1});
graph.push_back(mixtureFactor);
smoother_update = true;
} else { } else {
graph.add(BetweenFactor<Pose2>(X(key_s), X(key_t), odom_pose, graph_.add(BetweenFactor<Pose2>(X(keyS), X(keyT), odomPose,
pose_noise_model)); kPoseNoiseModel));
}
// Insert next pose initial guess
initial_.insert(X(keyT), initial_.at<Pose2>(X(keyS)) * odomPose);
} else {
// Loop closure
HybridNonlinearFactor loopFactor =
hybridLoopClosureFactor(loopCount, keyS, keyT, odomPose);
// print loop closure event keys:
std::cout << "Loop closure: " << keyS << " " << keyT << std::endl;
graph_.add(loopFactor);
doSmootherUpdate = true;
loopCount++;
} }
if (smoother_update) { if (doSmootherUpdate) {
SmootherUpdate(smoother, graph, init_values, maxNrHypotheses, &results); gttic_(SmootherUpdate);
beforeUpdate = clock();
smootherUpdate(smoother_, graph_, initial_, kMaxNrHypotheses, &result_);
afterUpdate = clock();
smootherUpdateTimes.push_back({index, afterUpdate - beforeUpdate});
gttoc_(SmootherUpdate);
doSmootherUpdate = false;
} }
// Print loop index and time taken in processor clock ticks // Record timing for odometry edges only
// if (index % 50 == 0 && key_s != key_t - 1) { if (keyS == keyT - 1) {
clock_t curTime = clock();
timeList.push_back(curTime - startTime);
}
// Print some status every 100 steps
if (index % 100 == 0) { if (index % 100 == 0) {
std::cout << "index: " << index << std::endl; std::cout << "Index: " << index << std::endl;
std::cout << "acc_time: " << time_list.back() / CLOCKS_PER_SEC << std::endl; if (!timeList.empty()) {
std::cout << "Acc_time: " << timeList.back() / CLOCKS_PER_SEC
<< " seconds" << std::endl;
// delta.discrete().print("The Discrete Assignment"); // delta.discrete().print("The Discrete Assignment");
tictoc_finishedIteration_(); tictoc_finishedIteration_();
tictoc_print_(); tictoc_print_();
} }
if (key_s == key_t - 1) {
clock_t cur_time = clock();
time_list.push_back(cur_time - start_time);
} }
index += 1; index++;
} }
SmootherUpdate(smoother, graph, init_values, maxNrHypotheses, &results); // Final update
beforeUpdate = clock();
smootherUpdate(smoother_, graph_, initial_, kMaxNrHypotheses, &result_);
afterUpdate = clock();
smootherUpdateTimes.push_back({index, afterUpdate - beforeUpdate});
clock_t end_time = clock(); // Final optimize
clock_t total_time = end_time - start_time; gttic_(HybridSmootherOptimize);
cout << "total_time: " << total_time / CLOCKS_PER_SEC << " seconds" << endl; HybridValues delta = smoother_.optimize();
gttoc_(HybridSmootherOptimize);
/// Write results to file result_.insert_or_assign(initial_.retract(delta.continuous()));
write_results(results, (key_t + 1), "HybridISAM_city10000.txt");
ofstream outfile_time; std::cout << "Final error: " << smoother_.hybridBayesNet().error(delta)
std::string time_file_name = "HybridISAM_city10000_time.txt"; << std::endl;
outfile_time.open(time_file_name);
for (auto acc_time : time_list) { clock_t endTime = clock();
outfile_time << acc_time << std::endl; clock_t totalTime = endTime - startTime;
std::cout << "Total time: " << totalTime / CLOCKS_PER_SEC << " seconds"
<< std::endl;
// Write results to file
writeResult(result_, keyT + 1, "Hybrid_City10000.txt");
// TODO Write to file
// for (size_t i = 0; i < smoother_update_times.size(); i++) {
// auto p = smoother_update_times.at(i);
// std::cout << p.first << ", " << p.second / CLOCKS_PER_SEC <<
// std::endl;
// }
// Write timing info to file
ofstream outfileTime;
std::string timeFileName = "Hybrid_City10000_time.txt";
outfileTime.open(timeFileName);
for (auto accTime : timeList) {
outfileTime << accTime << std::endl;
} }
outfile_time.close(); outfileTime.close();
cout << "output " << time_file_name << " file." << endl; std::cout << "Output " << timeFileName << " file." << std::endl;
}
};
/* ************************************************************************* */
int main() {
Experiment experiment(findExampleDataFile("T1_city10000_04.txt"));
// Experiment experiment("../data/mh_T1_city10000_04.txt"); //Type #1 only
// Experiment experiment("../data/mh_T3b_city10000_10.txt"); //Type #3 only
// Experiment experiment("../data/mh_T1_T3_city10000_04.txt"); //Type #1 +
// Type #3
// Run the experiment
experiment.run(kMaxLoopCount);
return 0; return 0;
} }

View File

@ -165,7 +165,8 @@ int main(int argc, char* argv[]) {
// Print loop index and time taken in processor clock ticks // Print loop index and time taken in processor clock ticks
if (index % 50 == 0 && key_s != key_t - 1) { if (index % 50 == 0 && key_s != key_t - 1) {
std::cout << "index: " << index << std::endl; std::cout << "index: " << index << std::endl;
std::cout << "acc_time: " << time_list.back() << std::endl; std::cout << "acc_time: " << time_list.back() / CLOCKS_PER_SEC
<< std::endl;
} }
if (key_s == key_t - 1) { if (key_s == key_t - 1) {
@ -190,7 +191,7 @@ int main(int argc, char* argv[]) {
clock_t end_time = clock(); clock_t end_time = clock();
clock_t total_time = end_time - start_time; clock_t total_time = end_time - start_time;
cout << "total_time: " << total_time << endl; cout << "total_time: " << total_time / CLOCKS_PER_SEC << endl;
/// Write results to file /// Write results to file
write_results(results, (key_t + 1)); write_results(results, (key_t + 1));

View File

@ -164,6 +164,12 @@ namespace gtsam {
virtual DiscreteFactor::shared_ptr multiply( virtual DiscreteFactor::shared_ptr multiply(
const DiscreteFactor::shared_ptr& f) const override; const DiscreteFactor::shared_ptr& f) const override;
/// multiply with a scalar
DiscreteFactor::shared_ptr operator*(double s) const override {
return std::make_shared<DecisionTreeFactor>(
apply([s](const double& a) { return Ring::mul(a, s); }));
}
/// multiply two factors /// multiply two factors
DecisionTreeFactor operator*(const DecisionTreeFactor& f) const override { DecisionTreeFactor operator*(const DecisionTreeFactor& f) const override {
return apply(f, Ring::mul); return apply(f, Ring::mul);
@ -201,6 +207,9 @@ namespace gtsam {
return combine(keys, Ring::add); return combine(keys, Ring::add);
} }
/// Find the maximum value in the factor.
double max() const override { return ADT::max(); };
/// Create new factor by maximizing over all values with the same separator. /// Create new factor by maximizing over all values with the same separator.
DiscreteFactor::shared_ptr max(size_t nrFrontals) const override { DiscreteFactor::shared_ptr max(size_t nrFrontals) const override {
return combine(nrFrontals, Ring::max); return combine(nrFrontals, Ring::max);

View File

@ -89,7 +89,7 @@ DiscreteBayesNet DiscreteBayesNet::prune(
DiscreteValues deadModesValues; DiscreteValues deadModesValues;
// If we have a dead mode threshold and discrete variables left after pruning, // If we have a dead mode threshold and discrete variables left after pruning,
// then we run dead mode removal. // then we run dead mode removal.
if (marginalThreshold.has_value() && pruned.keys().size() > 0) { if (marginalThreshold && pruned.keys().size() > 0) {
DiscreteMarginals marginals(DiscreteFactorGraph{pruned}); DiscreteMarginals marginals(DiscreteFactorGraph{pruned});
for (auto dkey : pruned.discreteKeys()) { for (auto dkey : pruned.discreteKeys()) {
const Vector probabilities = marginals.marginalProbabilities(dkey); const Vector probabilities = marginals.marginalProbabilities(dkey);

View File

@ -73,10 +73,7 @@ AlgebraicDecisionTree<Key> DiscreteFactor::errorTree() const {
/* ************************************************************************ */ /* ************************************************************************ */
DiscreteFactor::shared_ptr DiscreteFactor::scale() const { DiscreteFactor::shared_ptr DiscreteFactor::scale() const {
// Max over all the potentials by pretending all keys are frontal: return this->operator*(1.0 / max());
shared_ptr denominator = this->max(this->size());
// Normalize the product factor to prevent underflow.
return this->operator/(denominator);
} }
} // namespace gtsam } // namespace gtsam

View File

@ -126,6 +126,9 @@ class GTSAM_EXPORT DiscreteFactor : public Factor {
/// Compute error for each assignment and return as a tree /// Compute error for each assignment and return as a tree
virtual AlgebraicDecisionTree<Key> errorTree() const; virtual AlgebraicDecisionTree<Key> errorTree() const;
/// Multiply with a scalar
virtual DiscreteFactor::shared_ptr operator*(double s) const = 0;
/// Multiply in a DecisionTreeFactor and return the result as /// Multiply in a DecisionTreeFactor and return the result as
/// DecisionTreeFactor /// DecisionTreeFactor
virtual DecisionTreeFactor operator*(const DecisionTreeFactor&) const = 0; virtual DecisionTreeFactor operator*(const DecisionTreeFactor&) const = 0;
@ -152,6 +155,9 @@ class GTSAM_EXPORT DiscreteFactor : public Factor {
/// Create new factor by summing all values with the same separator values /// Create new factor by summing all values with the same separator values
virtual DiscreteFactor::shared_ptr sum(const Ordering& keys) const = 0; virtual DiscreteFactor::shared_ptr sum(const Ordering& keys) const = 0;
/// Find the maximum value in the factor.
virtual double max() const = 0;
/// Create new factor by maximizing over all values with the same separator. /// Create new factor by maximizing over all values with the same separator.
virtual DiscreteFactor::shared_ptr max(size_t nrFrontals) const = 0; virtual DiscreteFactor::shared_ptr max(size_t nrFrontals) const = 0;

View File

@ -65,15 +65,10 @@ namespace gtsam {
/* ************************************************************************ */ /* ************************************************************************ */
DiscreteFactor::shared_ptr DiscreteFactorGraph::product() const { DiscreteFactor::shared_ptr DiscreteFactorGraph::product() const {
DiscreteFactor::shared_ptr result; DiscreteFactor::shared_ptr result = nullptr;
for (auto it = this->begin(); it != this->end(); ++it) { for (const auto& factor : *this) {
if (*it) { if (factor) {
if (result) { result = result ? result->multiply(factor) : factor;
result = result->multiply(*it);
} else {
// Assign to the first non-null factor
result = *it;
}
} }
} }
return result; return result;
@ -120,15 +115,7 @@ namespace gtsam {
/* ************************************************************************ */ /* ************************************************************************ */
DiscreteFactor::shared_ptr DiscreteFactorGraph::scaledProduct() const { DiscreteFactor::shared_ptr DiscreteFactorGraph::scaledProduct() const {
// PRODUCT: multiply all factors return product()->scale();
gttic(product);
DiscreteFactor::shared_ptr product = this->product();
gttoc(product);
// Normalize the product factor to prevent underflow.
product = product->scale();
return product;
} }
/* ************************************************************************ */ /* ************************************************************************ */
@ -216,7 +203,7 @@ namespace gtsam {
const Ordering& frontalKeys) { const Ordering& frontalKeys) {
gttic(product); gttic(product);
// `product` is scaled later to prevent underflow. // `product` is scaled later to prevent underflow.
DiscreteFactor::shared_ptr product = factors.product(); DiscreteFactor::shared_ptr product = factors.scaledProduct();
gttoc(product); gttoc(product);
// sum out frontals, this is the factor on the separator // sum out frontals, this is the factor on the separator
@ -224,16 +211,6 @@ namespace gtsam {
DiscreteFactor::shared_ptr sum = product->sum(frontalKeys); DiscreteFactor::shared_ptr sum = product->sum(frontalKeys);
gttoc(sum); gttoc(sum);
// Normalize/scale to prevent underflow.
// We divide both `product` and `sum` by `max(sum)`
// since it is faster to compute and when the conditional
// is formed by `product/sum`, the scaling term cancels out.
gttic(scale);
DiscreteFactor::shared_ptr denominator = sum->max(sum->size());
product = product->operator/(denominator);
sum = sum->operator/(denominator);
gttoc(scale);
// Ordering keys for the conditional so that frontalKeys are really in front // Ordering keys for the conditional so that frontalKeys are really in front
Ordering orderedKeys; Ordering orderedKeys;
orderedKeys.insert(orderedKeys.end(), frontalKeys.begin(), orderedKeys.insert(orderedKeys.end(), frontalKeys.begin(),

View File

@ -110,6 +110,11 @@ DiscreteFactor::shared_ptr TableDistribution::max(const Ordering& keys) const {
return table_.max(keys); return table_.max(keys);
} }
/* ****************************************************************************/
DiscreteFactor::shared_ptr TableDistribution::operator*(double s) const {
return table_ * s;
}
/* ****************************************************************************/ /* ****************************************************************************/
DiscreteFactor::shared_ptr TableDistribution::operator/( DiscreteFactor::shared_ptr TableDistribution::operator/(
const DiscreteFactor::shared_ptr& f) const { const DiscreteFactor::shared_ptr& f) const {

View File

@ -116,12 +116,19 @@ class GTSAM_EXPORT TableDistribution : public DiscreteConditional {
/// Create new factor by summing all values with the same separator values /// Create new factor by summing all values with the same separator values
DiscreteFactor::shared_ptr sum(const Ordering& keys) const override; DiscreteFactor::shared_ptr sum(const Ordering& keys) const override;
/// Find the maximum value in the factor.
double max() const override { return table_.max(); }
/// Create new factor by maximizing over all values with the same separator. /// Create new factor by maximizing over all values with the same separator.
DiscreteFactor::shared_ptr max(size_t nrFrontals) const override; DiscreteFactor::shared_ptr max(size_t nrFrontals) const override;
/// Create new factor by maximizing over all values with the same separator. /// Create new factor by maximizing over all values with the same separator.
DiscreteFactor::shared_ptr max(const Ordering& keys) const override; DiscreteFactor::shared_ptr max(const Ordering& keys) const override;
/// Multiply by scalar s
DiscreteFactor::shared_ptr operator*(double s) const override;
/// divide by DiscreteFactor::shared_ptr f (safely) /// divide by DiscreteFactor::shared_ptr f (safely)
DiscreteFactor::shared_ptr operator/( DiscreteFactor::shared_ptr operator/(
const DiscreteFactor::shared_ptr& f) const override; const DiscreteFactor::shared_ptr& f) const override;

View File

@ -389,6 +389,36 @@ void TableFactor::print(const string& s, const KeyFormatter& formatter) const {
cout << "number of nnzs: " << sparse_table_.nonZeros() << endl; cout << "number of nnzs: " << sparse_table_.nonZeros() << endl;
} }
/* ************************************************************************ */
DiscreteFactor::shared_ptr TableFactor::sum(size_t nrFrontals) const {
return combine(nrFrontals, Ring::add);
}
/* ************************************************************************ */
DiscreteFactor::shared_ptr TableFactor::sum(const Ordering& keys) const {
return combine(keys, Ring::add);
}
/* ************************************************************************ */
double TableFactor::max() const {
double max_value = std::numeric_limits<double>::lowest();
for (Eigen::SparseVector<double>::InnerIterator it(sparse_table_); it; ++it) {
max_value = std::max(max_value, it.value());
}
return max_value;
}
/* ************************************************************************ */
DiscreteFactor::shared_ptr TableFactor::max(size_t nrFrontals) const {
return combine(nrFrontals, Ring::max);
}
/* ************************************************************************ */
DiscreteFactor::shared_ptr TableFactor::max(const Ordering& keys) const {
return combine(keys, Ring::max);
}
/* ************************************************************************ */ /* ************************************************************************ */
TableFactor TableFactor::apply(Unary op) const { TableFactor TableFactor::apply(Unary op) const {
// Initialize new factor. // Initialize new factor.

View File

@ -171,6 +171,12 @@ class GTSAM_EXPORT TableFactor : public DiscreteFactor {
/// Calculate error for DiscreteValues `x`, is -log(probability). /// Calculate error for DiscreteValues `x`, is -log(probability).
double error(const DiscreteValues& values) const override; double error(const DiscreteValues& values) const override;
/// multiply with a scalar
DiscreteFactor::shared_ptr operator*(double s) const override {
return std::make_shared<TableFactor>(
apply([s](const double& a) { return Ring::mul(a, s); }));
}
/// multiply two TableFactors /// multiply two TableFactors
TableFactor operator*(const TableFactor& f) const { TableFactor operator*(const TableFactor& f) const {
return apply(f, Ring::mul); return apply(f, Ring::mul);
@ -215,24 +221,19 @@ class GTSAM_EXPORT TableFactor : public DiscreteFactor {
DiscreteKeys parent_keys) const; DiscreteKeys parent_keys) const;
/// Create new factor by summing all values with the same separator values /// Create new factor by summing all values with the same separator values
DiscreteFactor::shared_ptr sum(size_t nrFrontals) const override { DiscreteFactor::shared_ptr sum(size_t nrFrontals) const override;
return combine(nrFrontals, Ring::add);
}
/// Create new factor by summing all values with the same separator values /// Create new factor by summing all values with the same separator values
DiscreteFactor::shared_ptr sum(const Ordering& keys) const override { DiscreteFactor::shared_ptr sum(const Ordering& keys) const override;
return combine(keys, Ring::add);
} /// Find the maximum value in the factor.
double max() const override;
/// Create new factor by maximizing over all values with the same separator. /// Create new factor by maximizing over all values with the same separator.
DiscreteFactor::shared_ptr max(size_t nrFrontals) const override { DiscreteFactor::shared_ptr max(size_t nrFrontals) const override;
return combine(nrFrontals, Ring::max);
}
/// Create new factor by maximizing over all values with the same separator. /// Create new factor by maximizing over all values with the same separator.
DiscreteFactor::shared_ptr max(const Ordering& keys) const override { DiscreteFactor::shared_ptr max(const Ordering& keys) const override;
return combine(keys, Ring::max);
}
/// @} /// @}
/// @name Advanced Interface /// @name Advanced Interface

View File

@ -191,11 +191,19 @@ size_t HybridGaussianConditional::nrComponents() const {
/* *******************************************************************************/ /* *******************************************************************************/
GaussianConditional::shared_ptr HybridGaussianConditional::choose( GaussianConditional::shared_ptr HybridGaussianConditional::choose(
const DiscreteValues &discreteValues) const { const DiscreteValues &discreteValues) const {
try {
auto &[factor, _] = factors()(discreteValues); auto &[factor, _] = factors()(discreteValues);
if (!factor) return nullptr; if (!factor) return nullptr;
auto conditional = checkConditional(factor); auto conditional = checkConditional(factor);
return conditional; return conditional;
} catch (const std::out_of_range &e) {
GTSAM_PRINT(*this);
GTSAM_PRINT(discreteValues);
throw std::runtime_error(
"HybridGaussianConditional::choose: discreteValues does not contain "
"all discrete parents.");
}
} }
/* *******************************************************************************/ /* *******************************************************************************/
@ -313,18 +321,21 @@ HybridGaussianConditional::shared_ptr HybridGaussianConditional::prune(
std::set_difference(theirs.begin(), theirs.end(), mine.begin(), mine.end(), std::set_difference(theirs.begin(), theirs.end(), mine.begin(), mine.end(),
std::back_inserter(diff)); std::back_inserter(diff));
// Find maximum probability value for every combination of our keys. // Find maximum probability value for every combination of *our* keys.
Ordering keys(diff); Ordering ordering(diff);
auto max = discreteProbs.max(keys); auto max = discreteProbs.max(ordering);
// Check the max value for every combination of our keys. // Check the max value for every combination of our keys.
// If the max value is 0.0, we can prune the corresponding conditional. // If the max value is 0.0, we can prune the corresponding conditional.
bool allPruned = true;
auto pruner = auto pruner =
[&](const Assignment<Key> &choices, [&](const Assignment<Key> &choices,
const GaussianFactorValuePair &pair) -> GaussianFactorValuePair { const GaussianFactorValuePair &pair) -> GaussianFactorValuePair {
if (max->evaluate(choices) == 0.0) // If this choice is zero probability or Gaussian is null, return infinity
if (!pair.first || max->evaluate(choices) == 0.0) {
return {nullptr, std::numeric_limits<double>::infinity()}; return {nullptr, std::numeric_limits<double>::infinity()};
else { } else {
allPruned = false;
// Add negLogConstant_ back so that the minimum negLogConstant in the // Add negLogConstant_ back so that the minimum negLogConstant in the
// HybridGaussianConditional is set correctly. // HybridGaussianConditional is set correctly.
return {pair.first, pair.second + negLogConstant_}; return {pair.first, pair.second + negLogConstant_};
@ -332,6 +343,7 @@ HybridGaussianConditional::shared_ptr HybridGaussianConditional::prune(
}; };
FactorValuePairs prunedConditionals = factors().apply(pruner); FactorValuePairs prunedConditionals = factors().apply(pruner);
if (allPruned) return nullptr;
return std::make_shared<HybridGaussianConditional>(discreteKeys(), return std::make_shared<HybridGaussianConditional>(discreteKeys(),
prunedConditionals, true); prunedConditionals, true);
} }

View File

@ -50,6 +50,8 @@
#include <utility> #include <utility>
#include <vector> #include <vector>
#define GTSAM_HYBRID_WITH_TABLEFACTOR 1
namespace gtsam { namespace gtsam {
/// Specialize EliminateableFactorGraph for HybridGaussianFactorGraph: /// Specialize EliminateableFactorGraph for HybridGaussianFactorGraph:
@ -253,7 +255,11 @@ static DiscreteFactor::shared_ptr DiscreteFactorFromErrors(
double min_log = errors.min(); double min_log = errors.min();
AlgebraicDecisionTree<Key> potentials( AlgebraicDecisionTree<Key> potentials(
errors, [&min_log](const double x) { return exp(-(x - min_log)); }); errors, [&min_log](const double x) { return exp(-(x - min_log)); });
#if GTSAM_HYBRID_WITH_TABLEFACTOR
return std::make_shared<TableFactor>(discreteKeys, potentials); return std::make_shared<TableFactor>(discreteKeys, potentials);
#else
return std::make_shared<DecisionTreeFactor>(discreteKeys, potentials);
#endif
} }
/* ************************************************************************ */ /* ************************************************************************ */
@ -290,9 +296,13 @@ static DiscreteFactorGraph CollectDiscreteFactors(
/// Get the underlying TableFactor /// Get the underlying TableFactor
dfg.push_back(dtc->table()); dfg.push_back(dtc->table());
} else { } else {
#if GTSAM_HYBRID_WITH_TABLEFACTOR
// Convert DiscreteConditional to TableFactor // Convert DiscreteConditional to TableFactor
auto tdc = std::make_shared<TableFactor>(*dc); auto tdc = std::make_shared<TableFactor>(*dc);
dfg.push_back(tdc); dfg.push_back(tdc);
#else
dfg.push_back(dc);
#endif
} }
#if GTSAM_HYBRID_TIMING #if GTSAM_HYBRID_TIMING
gttoc_(ConvertConditionalToTableFactor); gttoc_(ConvertConditionalToTableFactor);
@ -309,11 +319,18 @@ static DiscreteFactorGraph CollectDiscreteFactors(
static std::pair<HybridConditional::shared_ptr, std::shared_ptr<Factor>> static std::pair<HybridConditional::shared_ptr, std::shared_ptr<Factor>>
discreteElimination(const HybridGaussianFactorGraph &factors, discreteElimination(const HybridGaussianFactorGraph &factors,
const Ordering &frontalKeys) { const Ordering &frontalKeys) {
#if GTSAM_HYBRID_TIMING
gttic_(CollectDiscreteFactors);
#endif
DiscreteFactorGraph dfg = CollectDiscreteFactors(factors); DiscreteFactorGraph dfg = CollectDiscreteFactors(factors);
#if GTSAM_HYBRID_TIMING
gttoc_(CollectDiscreteFactors);
#endif
#if GTSAM_HYBRID_TIMING #if GTSAM_HYBRID_TIMING
gttic_(EliminateDiscrete); gttic_(EliminateDiscrete);
#endif #endif
#if GTSAM_HYBRID_WITH_TABLEFACTOR
// Check if separator is empty. // Check if separator is empty.
// This is the same as checking if the number of frontal variables // This is the same as checking if the number of frontal variables
// is the same as the number of variables in the DiscreteFactorGraph. // is the same as the number of variables in the DiscreteFactorGraph.
@ -323,9 +340,6 @@ discreteElimination(const HybridGaussianFactorGraph &factors,
// Get product factor // Get product factor
DiscreteFactor::shared_ptr product = dfg.scaledProduct(); DiscreteFactor::shared_ptr product = dfg.scaledProduct();
#if GTSAM_HYBRID_TIMING
gttic_(EliminateDiscreteFormDiscreteConditional);
#endif
// Check type of product, and get as TableFactor for efficiency. // Check type of product, and get as TableFactor for efficiency.
// Use object instead of pointer since we need it // Use object instead of pointer since we need it
// for the TableDistribution constructor. // for the TableDistribution constructor.
@ -337,19 +351,18 @@ discreteElimination(const HybridGaussianFactorGraph &factors,
} }
auto conditional = std::make_shared<TableDistribution>(p); auto conditional = std::make_shared<TableDistribution>(p);
#if GTSAM_HYBRID_TIMING
gttoc_(EliminateDiscreteFormDiscreteConditional);
#endif
DiscreteFactor::shared_ptr sum = p.sum(frontalKeys); DiscreteFactor::shared_ptr sum = p.sum(frontalKeys);
return {std::make_shared<HybridConditional>(conditional), sum}; return {std::make_shared<HybridConditional>(conditional), sum};
} else { } else {
#endif
// Perform sum-product. // Perform sum-product.
auto result = EliminateDiscrete(dfg, frontalKeys); auto result = EliminateDiscrete(dfg, frontalKeys);
return {std::make_shared<HybridConditional>(result.first), result.second}; return {std::make_shared<HybridConditional>(result.first), result.second};
#if GTSAM_HYBRID_WITH_TABLEFACTOR
} }
#endif
#if GTSAM_HYBRID_TIMING #if GTSAM_HYBRID_TIMING
gttoc_(EliminateDiscrete); gttoc_(EliminateDiscrete);
#endif #endif
@ -411,8 +424,14 @@ static std::shared_ptr<Factor> createHybridGaussianFactor(
throw std::runtime_error("createHybridGaussianFactors has mixed NULLs"); throw std::runtime_error("createHybridGaussianFactors has mixed NULLs");
} }
}; };
#if GTSAM_HYBRID_TIMING
gttic_(HybridCreateGaussianFactor);
#endif
DecisionTree<Key, GaussianFactorValuePair> newFactors(eliminationResults, DecisionTree<Key, GaussianFactorValuePair> newFactors(eliminationResults,
correct); correct);
#if GTSAM_HYBRID_TIMING
gttoc_(HybridCreateGaussianFactor);
#endif
return std::make_shared<HybridGaussianFactor>(discreteSeparator, newFactors); return std::make_shared<HybridGaussianFactor>(discreteSeparator, newFactors);
} }

View File

@ -21,55 +21,70 @@
#include <algorithm> #include <algorithm>
#include <unordered_set> #include <unordered_set>
// #define DEBUG_SMOOTHER
namespace gtsam { namespace gtsam {
/* ************************************************************************* */ /* ************************************************************************* */
Ordering HybridSmoother::getOrdering(const HybridGaussianFactorGraph &factors, Ordering HybridSmoother::getOrdering(const HybridGaussianFactorGraph &factors,
const KeySet &newFactorKeys) { const KeySet &lastKeysToEliminate) {
// Get all the discrete keys from the factors // Get all the discrete keys from the factors
KeySet allDiscrete = factors.discreteKeySet(); KeySet allDiscrete = factors.discreteKeySet();
// Create KeyVector with continuous keys followed by discrete keys. // Create KeyVector with continuous keys followed by discrete keys.
KeyVector newKeysDiscreteLast; KeyVector lastKeys;
// Insert continuous keys first. // Insert continuous keys first.
for (auto &k : newFactorKeys) { for (auto &k : lastKeysToEliminate) {
if (!allDiscrete.exists(k)) { if (!allDiscrete.exists(k)) {
newKeysDiscreteLast.push_back(k); lastKeys.push_back(k);
} }
} }
// Insert discrete keys at the end // Insert discrete keys at the end
std::copy(allDiscrete.begin(), allDiscrete.end(), std::copy(allDiscrete.begin(), allDiscrete.end(),
std::back_inserter(newKeysDiscreteLast)); std::back_inserter(lastKeys));
const VariableIndex index(factors);
// Get an ordering where the new keys are eliminated last // Get an ordering where the new keys are eliminated last
Ordering ordering = Ordering::ColamdConstrainedLast( Ordering ordering = Ordering::ColamdConstrainedLast(
index, KeyVector(newKeysDiscreteLast.begin(), newKeysDiscreteLast.end()), factors, KeyVector(lastKeys.begin(), lastKeys.end()), true);
true);
return ordering; return ordering;
} }
/* ************************************************************************* */ /* ************************************************************************* */
void HybridSmoother::update(const HybridGaussianFactorGraph &graph, void HybridSmoother::update(const HybridGaussianFactorGraph &newFactors,
std::optional<size_t> maxNrLeaves, std::optional<size_t> maxNrLeaves,
const std::optional<Ordering> given_ordering) { const std::optional<Ordering> given_ordering) {
const KeySet originalNewFactorKeys = newFactors.keys();
#ifdef DEBUG_SMOOTHER
std::cout << "hybridBayesNet_ size before: " << hybridBayesNet_.size()
<< std::endl;
std::cout << "newFactors size: " << newFactors.size() << std::endl;
#endif
HybridGaussianFactorGraph updatedGraph; HybridGaussianFactorGraph updatedGraph;
// Add the necessary conditionals from the previous timestep(s). // Add the necessary conditionals from the previous timestep(s).
std::tie(updatedGraph, hybridBayesNet_) = std::tie(updatedGraph, hybridBayesNet_) =
addConditionals(graph, hybridBayesNet_); addConditionals(newFactors, hybridBayesNet_);
#ifdef DEBUG_SMOOTHER
// print size of newFactors, updatedGraph, hybridBayesNet_
std::cout << "updatedGraph size: " << updatedGraph.size() << std::endl;
std::cout << "hybridBayesNet_ size after: " << hybridBayesNet_.size()
<< std::endl;
std::cout << "total size: " << updatedGraph.size() + hybridBayesNet_.size()
<< std::endl;
#endif
Ordering ordering; Ordering ordering;
// If no ordering provided, then we compute one // If no ordering provided, then we compute one
if (!given_ordering.has_value()) { if (!given_ordering.has_value()) {
// Get the keys from the new factors // Get the keys from the new factors
const KeySet newFactorKeys = graph.keys(); KeySet continuousKeysToInclude; // Scheme 1: empty, 15sec/2000, 64sec/3000 (69s without TF)
// continuousKeysToInclude = newFactors.keys(); // Scheme 2: all, 8sec/2000, 160sec/3000
// continuousKeysToInclude = updatedGraph.keys(); // Scheme 3: all, stopped after 80sec/2000
// Since updatedGraph now has all the connected conditionals, // Since updatedGraph now has all the connected conditionals,
// we can get the correct ordering. // we can get the correct ordering.
ordering = this->getOrdering(updatedGraph, newFactorKeys); ordering = this->getOrdering(updatedGraph, continuousKeysToInclude);
} else { } else {
ordering = *given_ordering; ordering = *given_ordering;
} }
@ -77,25 +92,64 @@ void HybridSmoother::update(const HybridGaussianFactorGraph &graph,
// Eliminate. // Eliminate.
HybridBayesNet bayesNetFragment = *updatedGraph.eliminateSequential(ordering); HybridBayesNet bayesNetFragment = *updatedGraph.eliminateSequential(ordering);
#ifdef DEBUG_SMOOTHER_DETAIL
for (auto conditional : bayesNetFragment) {
auto e = std::dynamic_pointer_cast<HybridConditional::BaseConditional>(
conditional);
GTSAM_PRINT(*e);
}
#endif
#ifdef DEBUG_SMOOTHER
// Print discrete keys in the bayesNetFragment:
std::cout << "Discrete keys in bayesNetFragment: ";
for (auto &key : HybridFactorGraph(bayesNetFragment).discreteKeySet()) {
std::cout << DefaultKeyFormatter(key) << " ";
}
#endif
/// Prune /// Prune
if (maxNrLeaves) { if (maxNrLeaves) {
// `pruneBayesNet` sets the leaves with 0 in discreteFactor to nullptr in // `pruneBayesNet` sets the leaves with 0 in discreteFactor to nullptr in
// all the conditionals with the same keys in bayesNetFragment. // all the conditionals with the same keys in bayesNetFragment.
bayesNetFragment = bayesNetFragment.prune(*maxNrLeaves, marginalThreshold_); DiscreteValues newlyFixedValues;
bayesNetFragment = bayesNetFragment.prune(*maxNrLeaves, marginalThreshold_,
&newlyFixedValues);
fixedValues_.insert(newlyFixedValues);
} }
#ifdef DEBUG_SMOOTHER
// Print discrete keys in the bayesNetFragment:
std::cout << "\nAfter pruning: ";
for (auto &key : HybridFactorGraph(bayesNetFragment).discreteKeySet()) {
std::cout << DefaultKeyFormatter(key) << " ";
}
std::cout << std::endl << std::endl;
#endif
#ifdef DEBUG_SMOOTHER_DETAIL
for (auto conditional : bayesNetFragment) {
auto c = std::dynamic_pointer_cast<HybridConditional::BaseConditional>(
conditional);
GTSAM_PRINT(*c);
}
#endif
// Add the partial bayes net to the posterior bayes net. // Add the partial bayes net to the posterior bayes net.
hybridBayesNet_.add(bayesNetFragment); hybridBayesNet_.add(bayesNetFragment);
} }
/* ************************************************************************* */ /* ************************************************************************* */
std::pair<HybridGaussianFactorGraph, HybridBayesNet> std::pair<HybridGaussianFactorGraph, HybridBayesNet>
HybridSmoother::addConditionals(const HybridGaussianFactorGraph &originalGraph, HybridSmoother::addConditionals(const HybridGaussianFactorGraph &newFactors,
const HybridBayesNet &hybridBayesNet) const { const HybridBayesNet &hybridBayesNet) const {
HybridGaussianFactorGraph graph(originalGraph); HybridGaussianFactorGraph graph(newFactors);
HybridBayesNet updatedHybridBayesNet(hybridBayesNet); HybridBayesNet updatedHybridBayesNet(hybridBayesNet);
KeySet factorKeys = graph.keys(); KeySet involvedKeys = newFactors.keys();
auto involved = [&involvedKeys](const Key &key) {
return involvedKeys.find(key) != involvedKeys.end();
};
// If hybridBayesNet is not empty, // If hybridBayesNet is not empty,
// it means we have conditionals to add to the factor graph. // it means we have conditionals to add to the factor graph.
@ -108,21 +162,36 @@ HybridSmoother::addConditionals(const HybridGaussianFactorGraph &originalGraph,
// NOTE(Varun) Using a for-range loop doesn't work since some of the // NOTE(Varun) Using a for-range loop doesn't work since some of the
// conditionals are invalid pointers // conditionals are invalid pointers
// First get all the keys involved.
// We do this by iterating over all conditionals, and checking if their
// frontals are involved in the factor graph. If yes, then also make the
// parent keys involved in the factor graph.
for (size_t i = 0; i < hybridBayesNet.size(); i++) { for (size_t i = 0; i < hybridBayesNet.size(); i++) {
auto conditional = hybridBayesNet.at(i); auto conditional = hybridBayesNet.at(i);
for (auto &key : conditional->frontals()) { for (auto &key : conditional->frontals()) {
if (std::find(factorKeys.begin(), factorKeys.end(), key) != if (involved(key)) {
factorKeys.end()) { // Add the conditional parents to involvedKeys
newConditionals.push_back(conditional);
// Add the conditional parents to factorKeys
// so we add those conditionals too. // so we add those conditionals too.
// NOTE: This assumes we have a structure where
// variables depend on those in the future.
for (auto &&parentKey : conditional->parents()) { for (auto &&parentKey : conditional->parents()) {
factorKeys.insert(parentKey); involvedKeys.insert(parentKey);
} }
// Break so we don't add parents twice.
break;
}
}
}
#ifdef DEBUG_SMOOTHER
PrintKeySet(involvedKeys);
#endif
for (size_t i = 0; i < hybridBayesNet.size(); i++) {
auto conditional = hybridBayesNet.at(i);
for (auto &key : conditional->frontals()) {
if (involved(key)) {
newConditionals.push_back(conditional);
// Remove the conditional from the updated Bayes net // Remove the conditional from the updated Bayes net
auto it = find(updatedHybridBayesNet.begin(), auto it = find(updatedHybridBayesNet.begin(),
@ -151,4 +220,21 @@ const HybridBayesNet &HybridSmoother::hybridBayesNet() const {
return hybridBayesNet_; return hybridBayesNet_;
} }
/* ************************************************************************* */
HybridValues HybridSmoother::optimize() const {
// Solve for the MPE
DiscreteValues mpe = hybridBayesNet_.mpe();
// Add fixed values to the MPE.
mpe.insert(fixedValues_);
// Given the MPE, compute the optimal continuous values.
GaussianBayesNet gbn = hybridBayesNet_.choose(mpe);
const VectorValues continuous = gbn.optimize();
if (std::find(gbn.begin(), gbn.end(), nullptr) != gbn.end()) {
throw std::runtime_error("At least one nullptr factor in hybridBayesNet_");
}
return HybridValues(continuous, mpe);
}
} // namespace gtsam } // namespace gtsam

View File

@ -106,6 +106,9 @@ class GTSAM_EXPORT HybridSmoother {
/// Return the Bayes Net posterior. /// Return the Bayes Net posterior.
const HybridBayesNet& hybridBayesNet() const; const HybridBayesNet& hybridBayesNet() const;
/// Optimize the hybrid Bayes Net, taking into accound fixed values.
HybridValues optimize() const;
}; };
} // namespace gtsam } // namespace gtsam

View File

@ -28,6 +28,28 @@ using symbol_shorthand::M;
using symbol_shorthand::X; using symbol_shorthand::X;
using symbol_shorthand::Z; using symbol_shorthand::Z;
/* ****************************************************************************/
// Test the HybridConditional constructor.
TEST(HybridConditional, Constructor) {
// Create a HybridGaussianConditional.
const KeyVector continuousKeys{X(0), X(1)};
const DiscreteKeys discreteKeys{{M(0), 2}};
const size_t nFrontals = 1;
const HybridConditional hc(continuousKeys, discreteKeys, nFrontals);
// Check Frontals:
EXPECT_LONGS_EQUAL(1, hc.nrFrontals());
const auto frontals = hc.frontals();
EXPECT_LONGS_EQUAL(1, frontals.size());
EXPECT_LONGS_EQUAL(X(0), *frontals.begin());
// Check parents:
const auto parents = hc.parents();
EXPECT_LONGS_EQUAL(2, parents.size());
EXPECT_LONGS_EQUAL(X(1), *parents.begin());
EXPECT_LONGS_EQUAL(M(0), *(parents.begin() + 1));
}
/* ****************************************************************************/ /* ****************************************************************************/
// Check invariants for all conditionals in a tiny Bayes net. // Check invariants for all conditionals in a tiny Bayes net.
TEST(HybridConditional, Invariants) { TEST(HybridConditional, Invariants) {
@ -43,6 +65,12 @@ TEST(HybridConditional, Invariants) {
auto hc0 = bn.at(0); auto hc0 = bn.at(0);
CHECK(hc0->isHybrid()); CHECK(hc0->isHybrid());
// Check parents:
const auto parents = hc0->parents();
EXPECT_LONGS_EQUAL(2, parents.size());
EXPECT_LONGS_EQUAL(X(0), *parents.begin());
EXPECT_LONGS_EQUAL(M(0), *(parents.begin() + 1));
// Check invariants as a HybridGaussianConditional. // Check invariants as a HybridGaussianConditional.
const auto conditional = hc0->asHybrid(); const auto conditional = hc0->asHybrid();
EXPECT(HybridGaussianConditional::CheckInvariants(*conditional, values)); EXPECT(HybridGaussianConditional::CheckInvariants(*conditional, values));

View File

@ -87,6 +87,16 @@ class GTSAM_UNSTABLE_EXPORT Constraint : public DiscreteFactor {
this->operator*(df->toDecisionTreeFactor())); this->operator*(df->toDecisionTreeFactor()));
} }
/// Multiply by a scalar
virtual DiscreteFactor::shared_ptr operator*(double s) const override {
return this->toDecisionTreeFactor() * s;
}
/// Multiply by a DecisionTreeFactor and return a DecisionTreeFactor
DecisionTreeFactor operator*(const DecisionTreeFactor& dtf) const override {
return this->toDecisionTreeFactor() * dtf;
}
/// divide by DiscreteFactor::shared_ptr f (safely) /// divide by DiscreteFactor::shared_ptr f (safely)
DiscreteFactor::shared_ptr operator/( DiscreteFactor::shared_ptr operator/(
const DiscreteFactor::shared_ptr& df) const override { const DiscreteFactor::shared_ptr& df) const override {
@ -104,6 +114,9 @@ class GTSAM_UNSTABLE_EXPORT Constraint : public DiscreteFactor {
return toDecisionTreeFactor().sum(keys); return toDecisionTreeFactor().sum(keys);
} }
/// Find the max value
double max() const override { return toDecisionTreeFactor().max(); }
DiscreteFactor::shared_ptr max(size_t nrFrontals) const override { DiscreteFactor::shared_ptr max(size_t nrFrontals) const override {
return toDecisionTreeFactor().max(nrFrontals); return toDecisionTreeFactor().max(nrFrontals);
} }