Some formatting
parent
f712d62150
commit
0c622294d2
|
@ -147,68 +147,74 @@ public:
|
|||
* G = F' * F - F' * E * P * E' * F
|
||||
* g = F' * (b - E * P * E' * b)
|
||||
* Fixed size version
|
||||
*/
|
||||
template<int N, int ND> // N = 2 or 3 (point dimension), ND is the camera dimension
|
||||
static SymmetricBlockMatrix SchurComplement(
|
||||
const std::vector< Eigen::Matrix<double, ZDim, ND>, Eigen::aligned_allocator< Eigen::Matrix<double, ZDim, ND> > >& Fs,
|
||||
const Matrix& E, const Eigen::Matrix<double, N, N>& P, const Vector& b) {
|
||||
*/
|
||||
template <int N,
|
||||
int ND> // N = 2 or 3 (point dimension), ND is the camera dimension
|
||||
static SymmetricBlockMatrix SchurComplement(
|
||||
const std::vector<
|
||||
Eigen::Matrix<double, ZDim, ND>,
|
||||
Eigen::aligned_allocator<Eigen::Matrix<double, ZDim, ND>>>& Fs,
|
||||
const Matrix& E, const Eigen::Matrix<double, N, N>& P, const Vector& b) {
|
||||
// a single point is observed in m cameras
|
||||
size_t m = Fs.size();
|
||||
|
||||
// a single point is observed in m cameras
|
||||
size_t m = Fs.size();
|
||||
// Create a SymmetricBlockMatrix (augmented hessian, with extra row/column with info vector)
|
||||
size_t M1 = ND * m + 1;
|
||||
std::vector<DenseIndex> dims(m + 1); // this also includes the b term
|
||||
std::fill(dims.begin(), dims.end() - 1, ND);
|
||||
dims.back() = 1;
|
||||
SymmetricBlockMatrix augmentedHessian(dims, Matrix::Zero(M1, M1));
|
||||
|
||||
// Create a SymmetricBlockMatrix (augmented hessian, with extra row/column with info vector)
|
||||
size_t M1 = ND * m + 1;
|
||||
std::vector<DenseIndex> dims(m + 1); // this also includes the b term
|
||||
std::fill(dims.begin(), dims.end() - 1, ND);
|
||||
dims.back() = 1;
|
||||
SymmetricBlockMatrix augmentedHessian(dims, Matrix::Zero(M1, M1));
|
||||
// Blockwise Schur complement
|
||||
for (size_t i = 0; i < m; i++) { // for each camera
|
||||
|
||||
// Blockwise Schur complement
|
||||
for (size_t i = 0; i < m; i++) { // for each camera
|
||||
const Eigen::Matrix<double, ZDim, ND>& Fi = Fs[i];
|
||||
const auto FiT = Fi.transpose();
|
||||
const Eigen::Matrix<double, ZDim, N> Ei_P = //
|
||||
E.block(ZDim * i, 0, ZDim, N) * P;
|
||||
|
||||
const Eigen::Matrix<double, ZDim, ND>& Fi = Fs[i];
|
||||
const auto FiT = Fi.transpose();
|
||||
const Eigen::Matrix<double, ZDim, N> Ei_P = //
|
||||
E.block(ZDim * i, 0, ZDim, N) * P;
|
||||
// D = (Dx2) * ZDim
|
||||
augmentedHessian.setOffDiagonalBlock(i, m, FiT * b.segment<ZDim>(ZDim * i) // F' * b
|
||||
- FiT * (Ei_P * (E.transpose() * b))); // D = (DxZDim) * (ZDimx3) * (N*ZDimm) * (ZDimm x 1)
|
||||
|
||||
// D = (Dx2) * ZDim
|
||||
augmentedHessian.setOffDiagonalBlock(i, m, FiT * b.segment<ZDim>(ZDim * i) // F' * b
|
||||
- FiT * (Ei_P * (E.transpose() * b))); // D = (DxZDim) * (ZDimx3) * (N*ZDimm) * (ZDimm x 1)
|
||||
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
|
||||
augmentedHessian.setDiagonalBlock(i, FiT
|
||||
* (Fi - Ei_P * E.block(ZDim * i, 0, ZDim, N).transpose() * Fi));
|
||||
|
||||
// (DxD) = (DxZDim) * ( (ZDimxD) - (ZDimx3) * (3xZDim) * (ZDimxD) )
|
||||
augmentedHessian.setDiagonalBlock(i, FiT
|
||||
* (Fi - Ei_P * E.block(ZDim * i, 0, ZDim, N).transpose() * Fi));
|
||||
// upper triangular part of the hessian
|
||||
for (size_t j = i + 1; j < m; j++) { // for each camera
|
||||
const Eigen::Matrix<double, ZDim, ND>& Fj = Fs[j];
|
||||
|
||||
// upper triangular part of the hessian
|
||||
for (size_t j = i + 1; j < m; j++) { // for each camera
|
||||
const Eigen::Matrix<double, ZDim, ND>& Fj = Fs[j];
|
||||
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
|
||||
augmentedHessian.setOffDiagonalBlock(i, j, -FiT
|
||||
* (Ei_P * E.block(ZDim * j, 0, ZDim, N).transpose() * Fj));
|
||||
}
|
||||
} // end of for over cameras
|
||||
|
||||
// (DxD) = (Dx2) * ( (2x2) * (2xD) )
|
||||
augmentedHessian.setOffDiagonalBlock(i, j, -FiT
|
||||
* (Ei_P * E.block(ZDim * j, 0, ZDim, N).transpose() * Fj));
|
||||
}
|
||||
} // end of for over cameras
|
||||
|
||||
augmentedHessian.diagonalBlock(m)(0, 0) += b.squaredNorm();
|
||||
return augmentedHessian;
|
||||
}
|
||||
augmentedHessian.diagonalBlock(m)(0, 0) += b.squaredNorm();
|
||||
return augmentedHessian;
|
||||
}
|
||||
|
||||
/**
|
||||
* Do Schur complement, given Jacobian as Fs,E,P, return SymmetricBlockMatrix
|
||||
* G = F' * F - F' * E * P * E' * F
|
||||
* g = F' * (b - E * P * E' * b)
|
||||
* In this version, we allow for the case where the keys in the Jacobian are organized
|
||||
* differently from the keys in the output SymmetricBlockMatrix
|
||||
* In particular: each diagonal block of the Jacobian F captures 2 poses (useful for rolling shutter and extrinsic calibration)
|
||||
* such that F keeps the block structure that makes the Schur complement trick fast.
|
||||
* In this version, we allow for the case where the keys in the Jacobian are
|
||||
* organized differently from the keys in the output SymmetricBlockMatrix In
|
||||
* particular: each diagonal block of the Jacobian F captures 2 poses (useful
|
||||
* for rolling shutter and extrinsic calibration) such that F keeps the block
|
||||
* structure that makes the Schur complement trick fast.
|
||||
*
|
||||
* N = 2 or 3 (point dimension), ND is the Jacobian block dimension, NDD is
|
||||
* the Hessian block dimension
|
||||
*/
|
||||
template<int N, int ND, int NDD> // N = 2 or 3 (point dimension), ND is the Jacobian block dimension, NDD is the Hessian block dimension
|
||||
template <int N, int ND, int NDD>
|
||||
static SymmetricBlockMatrix SchurComplementAndRearrangeBlocks(
|
||||
const std::vector<Eigen::Matrix<double, ZDim, ND>,
|
||||
Eigen::aligned_allocator<Eigen::Matrix<double, ZDim, ND> > >& Fs,
|
||||
const std::vector<
|
||||
Eigen::Matrix<double, ZDim, ND>,
|
||||
Eigen::aligned_allocator<Eigen::Matrix<double, ZDim, ND>>>& Fs,
|
||||
const Matrix& E, const Eigen::Matrix<double, N, N>& P, const Vector& b,
|
||||
const KeyVector jacobianKeys, const KeyVector hessianKeys) {
|
||||
|
||||
const KeyVector& jacobianKeys, const KeyVector& hessianKeys) {
|
||||
size_t nrNonuniqueKeys = jacobianKeys.size();
|
||||
size_t nrUniqueKeys = hessianKeys.size();
|
||||
|
||||
|
|
|
@ -18,6 +18,7 @@
|
|||
#pragma once
|
||||
|
||||
#include <gtsam/slam/SmartProjectionFactor.h>
|
||||
#include <gtsam/geometry/CameraSet.h>
|
||||
|
||||
namespace gtsam {
|
||||
/**
|
||||
|
@ -229,7 +230,9 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
|
|||
keyPairsEqual = false; break;
|
||||
}
|
||||
}
|
||||
}else{ keyPairsEqual = false; }
|
||||
} else {
|
||||
keyPairsEqual = false;
|
||||
}
|
||||
|
||||
double extrinsicCalibrationEqual = true;
|
||||
if(this->body_P_sensors_.size() == e->body_P_sensors().size()){
|
||||
|
@ -238,7 +241,9 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
|
|||
extrinsicCalibrationEqual = false; break;
|
||||
}
|
||||
}
|
||||
}else{ extrinsicCalibrationEqual = false; }
|
||||
} else {
|
||||
extrinsicCalibrationEqual = false;
|
||||
}
|
||||
|
||||
return e && Base::equals(p, tol) && K_all_ == e->calibration()
|
||||
&& alphas_ == e->alphas() && keyPairsEqual && extrinsicCalibrationEqual;
|
||||
|
@ -248,9 +253,10 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
|
|||
* Compute jacobian F, E and error vector at a given linearization point
|
||||
* @param values Values structure which must contain camera poses
|
||||
* corresponding to keys involved in this factor
|
||||
* @return Return arguments are the camera jacobians Fs (including the jacobian with
|
||||
* respect to both body poses we interpolate from), the point Jacobian E,
|
||||
* and the error vector b. Note that the jacobians are computed for a given point.
|
||||
* @return Return arguments are the camera jacobians Fs (including the
|
||||
* jacobian with respect to both body poses we interpolate from), the point
|
||||
* Jacobian E, and the error vector b. Note that the jacobians are computed
|
||||
* for a given point.
|
||||
*/
|
||||
void computeJacobiansWithTriangulatedPoint(FBlocks& Fs, Matrix& E, Vector& b,
|
||||
const Values& values) const {
|
||||
|
@ -267,13 +273,15 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
|
|||
Eigen::Matrix<double, ZDim, 3> Ei;
|
||||
|
||||
for (size_t i = 0; i < numViews; i++) { // for each camera/measurement
|
||||
const Pose3& w_P_body1 = values.at<Pose3>(world_P_body_key_pairs_[i].first);
|
||||
const Pose3& w_P_body2 = values.at<Pose3>(world_P_body_key_pairs_[i].second);
|
||||
auto w_P_body1 = values.at<Pose3>(world_P_body_key_pairs_[i].first);
|
||||
auto w_P_body2 = values.at<Pose3>(world_P_body_key_pairs_[i].second);
|
||||
double interpolationFactor = alphas_[i];
|
||||
// get interpolated pose:
|
||||
const Pose3& w_P_body = interpolate<Pose3>(w_P_body1, w_P_body2,interpolationFactor, dInterpPose_dPoseBody1, dInterpPose_dPoseBody2);
|
||||
const Pose3& body_P_cam = body_P_sensors_[i];
|
||||
const Pose3& w_P_cam = w_P_body.compose(body_P_cam, dPoseCam_dInterpPose);
|
||||
auto w_P_body =
|
||||
interpolate<Pose3>(w_P_body1, w_P_body2, interpolationFactor,
|
||||
dInterpPose_dPoseBody1, dInterpPose_dPoseBody2);
|
||||
auto body_P_cam = body_P_sensors_[i];
|
||||
auto w_P_cam = w_P_body.compose(body_P_cam, dPoseCam_dInterpPose);
|
||||
PinholeCamera<CALIBRATION> camera(w_P_cam, *K_all_[i]);
|
||||
|
||||
// get jacobians and error vector for current measurement
|
||||
|
@ -296,37 +304,40 @@ class SmartProjectionPoseFactorRollingShutter : public SmartProjectionFactor<CAM
|
|||
}
|
||||
|
||||
/// linearize and return a Hessianfactor that is an approximation of error(p)
|
||||
boost::shared_ptr<RegularHessianFactor<DimPose> > createHessianFactor(
|
||||
const Values& values, const double lambda = 0.0, bool diagonalDamping =
|
||||
false) const {
|
||||
|
||||
// we may have multiple observation sharing the same keys (due to the rolling shutter interpolation),
|
||||
// hence the number of unique keys may be smaller than 2 * nrMeasurements
|
||||
size_t nrUniqueKeys = this->keys_.size(); // note: by construction, keys_ only contains unique keys
|
||||
boost::shared_ptr<RegularHessianFactor<DimPose>> createHessianFactor(
|
||||
const Values& values, const double lambda = 0.0,
|
||||
bool diagonalDamping = false) const {
|
||||
// we may have multiple observation sharing the same keys (due to the
|
||||
// rolling shutter interpolation), hence the number of unique keys may be
|
||||
// smaller than 2 * nrMeasurements
|
||||
size_t nrUniqueKeys =
|
||||
this->keys_
|
||||
.size(); // note: by construction, keys_ only contains unique keys
|
||||
|
||||
// Create structures for Hessian Factors
|
||||
KeyVector js;
|
||||
std::vector < Matrix > Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
|
||||
std::vector < Vector > gs(nrUniqueKeys);
|
||||
std::vector<Matrix> Gs(nrUniqueKeys * (nrUniqueKeys + 1) / 2);
|
||||
std::vector<Vector> gs(nrUniqueKeys);
|
||||
|
||||
if (this->measured_.size() != this->cameras(values).size()) // 1 observation per interpolated camera
|
||||
throw std::runtime_error("SmartProjectionPoseFactorRollingShutter: "
|
||||
"measured_.size() inconsistent with input");
|
||||
if (this->measured_.size() !=
|
||||
this->cameras(values).size()) // 1 observation per interpolated camera
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionPoseFactorRollingShutter: "
|
||||
"measured_.size() inconsistent with input");
|
||||
|
||||
// triangulate 3D point at given linearization point
|
||||
this->triangulateSafe(this->cameras(values));
|
||||
|
||||
if (!this->result_) { // failed: return "empty/zero" Hessian
|
||||
if (this->params_.degeneracyMode == ZERO_ON_DEGENERACY) {
|
||||
for (Matrix& m : Gs)
|
||||
m = Matrix::Zero(DimPose, DimPose);
|
||||
for (Vector& v : gs)
|
||||
v = Vector::Zero(DimPose);
|
||||
return boost::make_shared < RegularHessianFactor<DimPose>
|
||||
> (this->keys_, Gs, gs, 0.0);
|
||||
for (Matrix& m : Gs) m = Matrix::Zero(DimPose, DimPose);
|
||||
for (Vector& v : gs) v = Vector::Zero(DimPose);
|
||||
return boost::make_shared<RegularHessianFactor<DimPose>>(this->keys_,
|
||||
Gs, gs, 0.0);
|
||||
} else {
|
||||
throw std::runtime_error("SmartProjectionPoseFactorRollingShutter: "
|
||||
"only supported degeneracy mode is ZERO_ON_DEGENERACY");
|
||||
throw std::runtime_error(
|
||||
"SmartProjectionPoseFactorRollingShutter: "
|
||||
"only supported degeneracy mode is ZERO_ON_DEGENERACY");
|
||||
}
|
||||
}
|
||||
// compute Jacobian given triangulated 3D Point
|
||||
|
|
Loading…
Reference in New Issue