diff --git a/gtsam/hybrid/HybridGaussianFactorGraph.cpp b/gtsam/hybrid/HybridGaussianFactorGraph.cpp index 66beb3e4c..a04f5776d 100644 --- a/gtsam/hybrid/HybridGaussianFactorGraph.cpp +++ b/gtsam/hybrid/HybridGaussianFactorGraph.cpp @@ -261,6 +261,7 @@ hybridElimination(const HybridGaussianFactorGraph &factors, if (!factor) { return 0.0; // If nullptr, return 0.0 probability } else { + // This is the probability q(μ) at the MLE point. double error = 0.5 * std::abs(factor->augmentedInformation().determinant()); return std::exp(-error); diff --git a/gtsam/hybrid/HybridGaussianFactorGraph.h b/gtsam/hybrid/HybridGaussianFactorGraph.h index 02ebea74a..c448400f0 100644 --- a/gtsam/hybrid/HybridGaussianFactorGraph.h +++ b/gtsam/hybrid/HybridGaussianFactorGraph.h @@ -252,8 +252,8 @@ class GTSAM_EXPORT HybridGaussianFactorGraph } /** - * @brief Compute the unnormalized probabilities of the continuous variables - * for each of the modes. + * @brief Compute the unnormalized probabilities P(X | M, Z) + * of the continuous variables for each of the mode sequences. * * @tparam BAYES Template on the type of Bayes graph, either a bayes net or a * bayes tree. @@ -304,8 +304,6 @@ class GTSAM_EXPORT HybridGaussianFactorGraph std::pair separateContinuousDiscreteOrdering( const Ordering& ordering) const; - - /** * @brief Return a Colamd constrained ordering where the discrete keys are * eliminated after the continuous keys.