remove model selection from hybrid bayes tree
parent
37c6484cbd
commit
0b1c3688c4
|
@ -378,37 +378,4 @@ HybridGaussianFactorGraph HybridBayesNet::toFactorGraph(
|
|||
}
|
||||
return fg;
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
GaussianBayesNetTree addGaussian(
|
||||
const GaussianBayesNetTree &gbnTree,
|
||||
const GaussianConditional::shared_ptr &factor) {
|
||||
// If the decision tree is not initialized, then initialize it.
|
||||
if (gbnTree.empty()) {
|
||||
GaussianBayesNet result{factor};
|
||||
return GaussianBayesNetTree(result);
|
||||
} else {
|
||||
auto add = [&factor](const GaussianBayesNet &graph) {
|
||||
auto result = graph;
|
||||
result.push_back(factor);
|
||||
return result;
|
||||
};
|
||||
return gbnTree.apply(add);
|
||||
}
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
AlgebraicDecisionTree<Key> computeLogNormConstants(
|
||||
const GaussianBayesNetValTree &bnTree) {
|
||||
AlgebraicDecisionTree<Key> log_norm_constants = DecisionTree<Key, double>(
|
||||
bnTree, [](const std::pair<GaussianBayesNet, double> &gbnAndValue) {
|
||||
GaussianBayesNet gbn = gbnAndValue.first;
|
||||
if (gbn.size() == 0) {
|
||||
return 0.0;
|
||||
}
|
||||
return gbn.logNormalizationConstant();
|
||||
});
|
||||
return log_norm_constants;
|
||||
}
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -262,15 +262,4 @@ struct traits<HybridBayesNet> : public Testable<HybridBayesNet> {};
|
|||
GaussianBayesNetTree addGaussian(const GaussianBayesNetTree &gbnTree,
|
||||
const GaussianConditional::shared_ptr &factor);
|
||||
|
||||
/**
|
||||
* @brief Compute the (logarithmic) normalization constant for each Bayes
|
||||
* network in the tree.
|
||||
*
|
||||
* @param bnTree A tree of Bayes networks in each leaf. The tree encodes a
|
||||
* discrete assignment yielding the Bayes net.
|
||||
* @return AlgebraicDecisionTree<Key>
|
||||
*/
|
||||
AlgebraicDecisionTree<Key> computeLogNormConstants(
|
||||
const GaussianBayesNetValTree &bnTree);
|
||||
|
||||
} // namespace gtsam
|
||||
|
|
|
@ -38,117 +38,18 @@ bool HybridBayesTree::equals(const This& other, double tol) const {
|
|||
return Base::equals(other, tol);
|
||||
}
|
||||
|
||||
GaussianBayesNetTree& HybridBayesTree::addCliqueToTree(
|
||||
const sharedClique& clique, GaussianBayesNetTree& result) const {
|
||||
// Perform bottom-up inclusion
|
||||
for (sharedClique child : clique->children) {
|
||||
result = addCliqueToTree(child, result);
|
||||
}
|
||||
|
||||
auto f = clique->conditional();
|
||||
|
||||
if (auto hc = std::dynamic_pointer_cast<HybridConditional>(f)) {
|
||||
if (auto gm = hc->asMixture()) {
|
||||
result = gm->add(result);
|
||||
} else if (auto g = hc->asGaussian()) {
|
||||
result = addGaussian(result, g);
|
||||
} else {
|
||||
// Has to be discrete, which we don't add.
|
||||
}
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/* ************************************************************************ */
|
||||
GaussianBayesNetValTree HybridBayesTree::assembleTree() const {
|
||||
GaussianBayesNetTree result;
|
||||
for (auto&& root : roots_) {
|
||||
result = addCliqueToTree(root, result);
|
||||
}
|
||||
|
||||
GaussianBayesNetValTree resultTree(result, [](const GaussianBayesNet& gbn) {
|
||||
return std::make_pair(gbn, 0.0);
|
||||
});
|
||||
return resultTree;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
AlgebraicDecisionTree<Key> HybridBayesTree::modelSelection() const {
|
||||
/*
|
||||
To perform model selection, we need:
|
||||
q(mu; M, Z) * sqrt((2*pi)^n*det(Sigma))
|
||||
|
||||
If q(mu; M, Z) = exp(-error) & k = 1.0 / sqrt((2*pi)^n*det(Sigma))
|
||||
thus, q * sqrt((2*pi)^n*det(Sigma)) = q/k = exp(log(q/k))
|
||||
= exp(log(q) - log(k)) = exp(-error - log(k))
|
||||
= exp(-(error + log(k))),
|
||||
where error is computed at the corresponding MAP point, gbt.error(mu).
|
||||
|
||||
So we compute (error + log(k)) and exponentiate later
|
||||
*/
|
||||
|
||||
GaussianBayesNetValTree bnTree = assembleTree();
|
||||
|
||||
GaussianBayesNetValTree bn_error = bnTree.apply(
|
||||
[this](const Assignment<Key>& assignment,
|
||||
const std::pair<GaussianBayesNet, double>& gbnAndValue) {
|
||||
// Compute the X* of each assignment
|
||||
VectorValues mu = gbnAndValue.first.optimize();
|
||||
|
||||
// mu is empty if gbn had nullptrs
|
||||
if (mu.size() == 0) {
|
||||
return std::make_pair(gbnAndValue.first,
|
||||
std::numeric_limits<double>::max());
|
||||
}
|
||||
|
||||
// Compute the error for X* and the assignment
|
||||
double error =
|
||||
this->error(HybridValues(mu, DiscreteValues(assignment)));
|
||||
|
||||
return std::make_pair(gbnAndValue.first, error);
|
||||
});
|
||||
|
||||
auto trees = unzip(bn_error);
|
||||
AlgebraicDecisionTree<Key> errorTree = trees.second;
|
||||
|
||||
// Compute model selection term (with help from ADT methods)
|
||||
AlgebraicDecisionTree<Key> modelSelectionTerm = errorTree * -1;
|
||||
|
||||
// Exponentiate using our scheme
|
||||
double max_log = modelSelectionTerm.max();
|
||||
modelSelectionTerm = DecisionTree<Key, double>(
|
||||
modelSelectionTerm,
|
||||
[&max_log](const double& x) { return std::exp(x - max_log); });
|
||||
modelSelectionTerm = modelSelectionTerm.normalize(modelSelectionTerm.sum());
|
||||
|
||||
return modelSelectionTerm;
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
HybridValues HybridBayesTree::optimize() const {
|
||||
DiscreteFactorGraph discrete_fg;
|
||||
DiscreteValues mpe;
|
||||
|
||||
// Compute model selection term
|
||||
AlgebraicDecisionTree<Key> modelSelectionTerm = modelSelection();
|
||||
|
||||
auto root = roots_.at(0);
|
||||
// Access the clique and get the underlying hybrid conditional
|
||||
HybridConditional::shared_ptr root_conditional = root->conditional();
|
||||
|
||||
// Get the set of all discrete keys involved in model selection
|
||||
std::set<DiscreteKey> discreteKeySet;
|
||||
|
||||
// The root should be discrete only, we compute the MPE
|
||||
if (root_conditional->isDiscrete()) {
|
||||
discrete_fg.push_back(root_conditional->asDiscrete());
|
||||
|
||||
// Only add model_selection if we have discrete keys
|
||||
if (discreteKeySet.size() > 0) {
|
||||
discrete_fg.push_back(DecisionTreeFactor(
|
||||
DiscreteKeys(discreteKeySet.begin(), discreteKeySet.end()),
|
||||
modelSelectionTerm));
|
||||
}
|
||||
mpe = discrete_fg.optimize();
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
|
|
|
@ -89,46 +89,6 @@ class GTSAM_EXPORT HybridBayesTree : public BayesTree<HybridBayesTreeClique> {
|
|||
return HybridGaussianFactorGraph(*this).error(values);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Helper function to add a clique of hybrid conditionals to the passed
|
||||
* in GaussianBayesNetTree. Operates recursively on the clique in a bottom-up
|
||||
* fashion, adding the children first.
|
||||
*
|
||||
* @param clique The
|
||||
* @param result
|
||||
* @return GaussianBayesNetTree&
|
||||
*/
|
||||
GaussianBayesNetTree& addCliqueToTree(const sharedClique& clique,
|
||||
GaussianBayesNetTree& result) const;
|
||||
|
||||
/**
|
||||
* @brief Assemble a DecisionTree of (GaussianBayesTree, double) leaves for
|
||||
* each discrete assignment.
|
||||
* The included double value is used to make
|
||||
* constructing the model selection term cleaner and more efficient.
|
||||
*
|
||||
* @return GaussianBayesNetValTree
|
||||
*/
|
||||
GaussianBayesNetValTree assembleTree() const;
|
||||
|
||||
/*
|
||||
Compute L(M;Z), the likelihood of the discrete model M
|
||||
given the measurements Z.
|
||||
This is called the model selection term.
|
||||
|
||||
To do so, we perform the integration of L(M;Z) ∝ L(X;M,Z)P(X|M).
|
||||
|
||||
By Bayes' rule, P(X|M,Z) ∝ L(X;M,Z)P(X|M),
|
||||
hence L(X;M,Z)P(X|M) is the unnormalized probabilty of
|
||||
the joint Gaussian distribution.
|
||||
|
||||
This can be computed by multiplying all the exponentiated errors
|
||||
of each of the conditionals.
|
||||
|
||||
Return a tree where each leaf value is L(M_i;Z).
|
||||
*/
|
||||
AlgebraicDecisionTree<Key> modelSelection() const;
|
||||
|
||||
/**
|
||||
* @brief Optimize the hybrid Bayes tree by computing the MPE for the current
|
||||
* set of discrete variables and using it to compute the best continuous
|
||||
|
|
|
@ -252,30 +252,16 @@ TEST(MixtureFactor, DifferentCovariances) {
|
|||
|
||||
// Check that we get different error values at the MLE point μ.
|
||||
AlgebraicDecisionTree<Key> errorTree = hbn->errorTree(cv);
|
||||
auto cond0 = hbn->at(0)->asMixture();
|
||||
auto cond1 = hbn->at(1)->asMixture();
|
||||
auto discrete_cond = hbn->at(2)->asDiscrete();
|
||||
|
||||
HybridValues hv0(cv, DiscreteValues{{M(1), 0}});
|
||||
HybridValues hv1(cv, DiscreteValues{{M(1), 1}});
|
||||
AlgebraicDecisionTree<Key> expectedErrorTree(
|
||||
m1,
|
||||
cond0->error(hv0) // cond0(0)->logNormalizationConstant()
|
||||
// - cond0(1)->logNormalizationConstant
|
||||
+ cond1->error(hv0) + discrete_cond->error(DiscreteValues{{M(1), 0}}),
|
||||
cond0->error(hv1) // cond1(0)->logNormalizationConstant()
|
||||
// - cond1(1)->logNormalizationConstant
|
||||
+ cond1->error(hv1) +
|
||||
discrete_cond->error(DiscreteValues{{M(1), 0}}));
|
||||
|
||||
auto cond0 = hbn->at(0)->asMixture();
|
||||
auto cond1 = hbn->at(1)->asMixture();
|
||||
auto discrete_cond = hbn->at(2)->asDiscrete();
|
||||
AlgebraicDecisionTree<Key> expectedErrorTree(m1, 9.90348755254,
|
||||
0.69314718056);
|
||||
EXPECT(assert_equal(expectedErrorTree, errorTree));
|
||||
|
||||
DiscreteValues dv;
|
||||
dv.insert({M(1), 1});
|
||||
HybridValues expected_values(cv, dv);
|
||||
|
||||
HybridValues actual_values = hbn->optimize();
|
||||
|
||||
EXPECT(assert_equal(expected_values, actual_values));
|
||||
}
|
||||
|
||||
/* ************************************************************************* */
|
||||
|
@ -329,16 +315,7 @@ TEST(MixtureFactor, DifferentMeansAndCovariances) {
|
|||
auto prior = PriorFactor<double>(X(1), x1, prior_noise).linearize(values);
|
||||
mixture_fg.push_back(prior);
|
||||
|
||||
// bn.print("BayesNet:");
|
||||
// mixture_fg.print("\n\n");
|
||||
|
||||
VectorValues vv{{X(1), x1 * I_1x1}, {X(2), x2 * I_1x1}};
|
||||
// std::cout << "FG error for m1=0: "
|
||||
// << mixture_fg.error(HybridValues(vv, DiscreteValues{{m1.first, 0}}))
|
||||
// << std::endl;
|
||||
// std::cout << "FG error for m1=1: "
|
||||
// << mixture_fg.error(HybridValues(vv, DiscreteValues{{m1.first, 1}}))
|
||||
// << std::endl;
|
||||
|
||||
auto hbn = mixture_fg.eliminateSequential();
|
||||
|
||||
|
@ -347,8 +324,10 @@ TEST(MixtureFactor, DifferentMeansAndCovariances) {
|
|||
VectorValues cv;
|
||||
cv.insert(X(1), Vector1(0.0));
|
||||
cv.insert(X(2), Vector1(-7.0));
|
||||
|
||||
// The first value is chosen as the tiebreaker
|
||||
DiscreteValues dv;
|
||||
dv.insert({M(1), 1});
|
||||
dv.insert({M(1), 0});
|
||||
HybridValues expected_values(cv, dv);
|
||||
|
||||
EXPECT(assert_equal(expected_values, actual_values));
|
||||
|
|
Loading…
Reference in New Issue