added details about covariance discretization with references
parent
aa4a163480
commit
0968c6005e
|
@ -1908,13 +1908,13 @@ G_{k}Q_{k}G_{k}^{T}=\left[\begin{array}{ccccccc}
|
|||
0 & 0 & 0 & \Sigma^{b^{\omega}} & 0 & 0 & 0
|
||||
\end{array}\right]\\
|
||||
\left[\begin{array}{ccccc}
|
||||
\deriv{\theta}{\epsilon^{\omega}} & 0 & 0 & 0 & 0\\
|
||||
0 & \deriv p{\epsilon^{a}} & \deriv v{\epsilon^{a}} & 0 & 0\\
|
||||
\deriv{\theta}{\epsilon^{\omega}}^{T} & 0 & 0 & 0 & 0\\
|
||||
0 & \deriv p{\epsilon^{a}}^{T} & \deriv v{\epsilon^{a}}^{T} & 0 & 0\\
|
||||
0 & 0 & 0 & I_{3\times3} & 0\\
|
||||
0 & 0 & 0 & 0 & I_{3\times3}\\
|
||||
0 & \deriv p{\epsilon^{int}} & 0 & 0 & 0\\
|
||||
0 & \deriv p{\eta_{init}^{b^{a}}} & \deriv v{\eta_{init}^{b^{a}}} & 0 & 0\\
|
||||
\deriv{\theta}{\eta_{init}^{b^{\omega}}} & 0 & 0 & 0 & 0
|
||||
0 & \deriv p{\epsilon^{int}}^{T} & 0 & 0 & 0\\
|
||||
0 & \deriv p{\eta_{init}^{b^{a}}}^{T} & \deriv v{\eta_{init}^{b^{a}}}^{T} & 0 & 0\\
|
||||
\deriv{\theta}{\eta_{init}^{b^{\omega}}}^{T} & 0 & 0 & 0 & 0
|
||||
\end{array}\right]
|
||||
\end{multline*}
|
||||
|
||||
|
@ -1928,10 +1928,10 @@ G_{k}Q_{k}G_{k}^{T}=\left[\begin{array}{ccccccc}
|
|||
\begin{multline*}
|
||||
=\\
|
||||
\left[\begin{array}{ccccc}
|
||||
\deriv{\theta}{\epsilon^{\omega}}\Sigma^{\omega}\deriv{\theta}{\epsilon^{\omega}}+\deriv{\theta}{\eta_{init}^{b^{\omega}}}\Sigma^{init_{22}}\deriv{\theta}{\eta_{init}^{b^{\omega}}} & \deriv{\theta}{\eta_{init}^{b^{\omega}}}\Sigma^{init_{21}}\deriv p{\eta_{init}^{b^{a}}} & \deriv{\theta}{\eta_{init}^{b^{\omega}}}\Sigma^{init_{21}}\deriv v{\eta_{init}^{b^{a}}} & 0 & 0\\
|
||||
\deriv p{\eta_{init}^{b^{a}}}\Sigma^{init_{12}}\deriv{\theta}{\eta_{init}^{b^{\omega}}} & \deriv p{\epsilon^{a}}\Sigma^{a}\deriv p{\epsilon^{a}}+\deriv p{\epsilon^{int}}\Sigma^{int}\deriv p{\epsilon^{int}}\\
|
||||
& +\deriv p{\eta_{init}^{b^{a}}}\Sigma^{init_{11}}\deriv p{\eta_{init}^{b^{a}}} & \deriv p{\epsilon^{a}}\Sigma^{a}\deriv v{\epsilon^{a}}+\deriv p{\eta_{init}^{b^{a}}}\Sigma^{init_{11}}\deriv v{\eta_{init}^{b^{a}}} & 0 & 0\\
|
||||
\deriv v{\eta_{init}^{b^{a}}}\Sigma^{init_{12}}\deriv{\theta}{\eta_{init}^{b^{\omega}}} & \deriv v{\epsilon^{a}}\Sigma^{a}\deriv p{\epsilon^{a}}+\deriv v{\eta_{init}^{b^{a}}}\Sigma^{init_{11}}\deriv p{\eta_{init}^{b^{a}}} & \deriv v{\epsilon^{a}}\Sigma^{a}\deriv v{\epsilon^{a}}+\deriv v{\eta_{init}^{b^{a}}}\Sigma^{init_{11}}\deriv v{\eta_{init}^{b^{a}}} & 0 & 0\\
|
||||
\deriv{\theta}{\epsilon^{\omega}}\Sigma^{\omega}\deriv{\theta}{\epsilon^{\omega}}^{T}+\deriv{\theta}{\eta_{init}^{b^{\omega}}}\Sigma^{init_{22}}\deriv{\theta}{\eta_{init}^{b^{\omega}}}^{T} & \deriv{\theta}{\eta_{init}^{b^{\omega}}}\Sigma^{init_{21}}\deriv p{\eta_{init}^{b^{a}}}^{T} & \deriv{\theta}{\eta_{init}^{b^{\omega}}}\Sigma^{init_{21}}\deriv v{\eta_{init}^{b^{a}}}^{T} & 0 & 0\\
|
||||
\deriv p{\eta_{init}^{b^{a}}}\Sigma^{init_{12}}\deriv{\theta}{\eta_{init}^{b^{\omega}}}^{T} & \deriv p{\epsilon^{a}}\Sigma^{a}\deriv p{\epsilon^{a}}^{T}+\deriv p{\epsilon^{int}}\Sigma^{int}\deriv p{\epsilon^{int}}^{T}\\
|
||||
& +\deriv p{\eta_{init}^{b^{a}}}\Sigma^{init_{11}}\deriv p{\eta_{init}^{b^{a}}}^{T} & \deriv p{\epsilon^{a}}\Sigma^{a}\deriv v{\epsilon^{a}}^{T}+\deriv p{\eta_{init}^{b^{a}}}\Sigma^{init_{11}}\deriv v{\eta_{init}^{b^{a}}}^{T} & 0 & 0\\
|
||||
\deriv v{\eta_{init}^{b^{a}}}\Sigma^{init_{12}}\deriv{\theta}{\eta_{init}^{b^{\omega}}}^{T} & \deriv v{\epsilon^{a}}\Sigma^{a}\deriv p{\epsilon^{a}}^{T}+\deriv v{\eta_{init}^{b^{a}}}\Sigma^{init_{11}}\deriv p{\eta_{init}^{b^{a}}}^{T} & \deriv v{\epsilon^{a}}\Sigma^{a}\deriv v{\epsilon^{a}}^{T}+\deriv v{\eta_{init}^{b^{a}}}\Sigma^{init_{11}}\deriv v{\eta_{init}^{b^{a}}}^{T} & 0 & 0\\
|
||||
0 & 0 & 0 & \Sigma^{b^{a}} & 0\\
|
||||
0 & 0 & 0 & 0 & \Sigma^{b^{\omega}}
|
||||
\end{array}\right]
|
||||
|
@ -1952,23 +1952,23 @@ which we can break into 3 matrices for clarity, representing the main diagonal
|
|||
\begin{multline*}
|
||||
=\\
|
||||
\left[\begin{array}{ccccc}
|
||||
\deriv{\theta}{\epsilon^{\omega}}\Sigma^{\omega}\deriv{\theta}{\epsilon^{\omega}} & 0 & 0 & 0 & 0\\
|
||||
0 & \deriv p{\epsilon^{a}}\Sigma^{a}\deriv p{\epsilon^{a}} & 0 & 0 & 0\\
|
||||
0 & 0 & \deriv v{\epsilon^{a}}\Sigma^{a}\deriv v{\epsilon^{a}} & 0 & 0\\
|
||||
\deriv{\theta}{\epsilon^{\omega}}\Sigma^{\omega}\deriv{\theta}{\epsilon^{\omega}}^{T} & 0 & 0 & 0 & 0\\
|
||||
0 & \deriv p{\epsilon^{a}}\Sigma^{a}\deriv p{\epsilon^{a}}^{T} & 0 & 0 & 0\\
|
||||
0 & 0 & \deriv v{\epsilon^{a}}\Sigma^{a}\deriv v{\epsilon^{a}}^{T} & 0 & 0\\
|
||||
0 & 0 & 0 & \Sigma^{b^{a}} & 0\\
|
||||
0 & 0 & 0 & 0 & \Sigma^{b^{\omega}}
|
||||
\end{array}\right]+\\
|
||||
\left[\begin{array}{ccccc}
|
||||
\deriv{\theta}{\eta_{init}^{b^{\omega}}}\Sigma^{init_{22}}\deriv{\theta}{\eta_{init}^{b^{\omega}}} & 0 & 0 & 0 & 0\\
|
||||
0 & \deriv p{\epsilon^{int}}\Sigma^{int}\deriv p{\epsilon^{int}}+\deriv p{\eta_{init}^{b^{a}}}\Sigma^{init_{11}}\deriv p{\eta_{init}^{b^{a}}} & 0 & 0 & 0\\
|
||||
0 & 0 & \deriv v{\eta_{init}^{b^{a}}}\Sigma^{init_{11}}\deriv v{\eta_{init}^{b^{a}}} & 0 & 0\\
|
||||
\deriv{\theta}{\eta_{init}^{b^{\omega}}}\Sigma^{init_{22}}\deriv{\theta}{\eta_{init}^{b^{\omega}}}^{T} & 0 & 0 & 0 & 0\\
|
||||
0 & \deriv p{\epsilon^{int}}\Sigma^{int}\deriv p{\epsilon^{int}}^{T}+\deriv p{\eta_{init}^{b^{a}}}\Sigma^{init_{11}}\deriv p{\eta_{init}^{b^{a}}}^{T} & 0 & 0 & 0\\
|
||||
0 & 0 & \deriv v{\eta_{init}^{b^{a}}}\Sigma^{init_{11}}\deriv v{\eta_{init}^{b^{a}}}^{T} & 0 & 0\\
|
||||
0 & 0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0 & 0
|
||||
\end{array}\right]+\\
|
||||
\left[\begin{array}{ccccc}
|
||||
0 & \deriv{\theta}{\eta_{init}^{b^{\omega}}}\Sigma^{init_{21}}\deriv p{\eta_{init}^{b^{a}}} & \deriv{\theta}{\eta_{init}^{b^{\omega}}}\Sigma^{init_{21}}\deriv v{\eta_{init}^{b^{a}}} & 0 & 0\\
|
||||
\deriv p{\eta_{init}^{b^{a}}}\Sigma^{init_{12}}\deriv{\theta}{\eta_{init}^{b^{\omega}}} & 0 & \deriv p{\epsilon^{a}}\Sigma^{a}\deriv v{\epsilon^{a}}+\deriv p{\eta_{init}^{b^{a}}}\Sigma^{init_{11}}\deriv v{\eta_{init}^{b^{a}}} & 0 & 0\\
|
||||
\deriv v{\eta_{init}^{b^{a}}}\Sigma^{init_{12}}\deriv{\theta}{\eta_{init}^{b^{\omega}}} & \deriv v{\epsilon^{a}}\Sigma^{a}\deriv p{\epsilon^{a}}+\deriv v{\eta_{init}^{b^{a}}}\Sigma^{init_{11}}\deriv p{\eta_{init}^{b^{a}}} & 0 & 0 & 0\\
|
||||
0 & \deriv{\theta}{\eta_{init}^{b^{\omega}}}\Sigma^{init_{21}}\deriv p{\eta_{init}^{b^{a}}}^{T} & \deriv{\theta}{\eta_{init}^{b^{\omega}}}\Sigma^{init_{21}}\deriv v{\eta_{init}^{b^{a}}}^{T} & 0 & 0\\
|
||||
\deriv p{\eta_{init}^{b^{a}}}\Sigma^{init_{12}}\deriv{\theta}{\eta_{init}^{b^{\omega}}}^{T} & 0 & \deriv p{\epsilon^{a}}\Sigma^{a}\deriv v{\epsilon^{a}}^{T}+\deriv p{\eta_{init}^{b^{a}}}\Sigma^{init_{11}}\deriv v{\eta_{init}^{b^{a}}}^{T} & 0 & 0\\
|
||||
\deriv v{\eta_{init}^{b^{a}}}\Sigma^{init_{12}}\deriv{\theta}{\eta_{init}^{b^{\omega}}}^{T} & \deriv v{\epsilon^{a}}\Sigma^{a}\deriv p{\epsilon^{a}}^{T}+\deriv v{\eta_{init}^{b^{a}}}\Sigma^{init_{11}}\deriv p{\eta_{init}^{b^{a}}}^{T} & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0 & 0\\
|
||||
0 & 0 & 0 & 0 & 0
|
||||
\end{array}\right]
|
||||
|
@ -1979,6 +1979,73 @@ which we can break into 3 matrices for clarity, representing the main diagonal
|
|||
|
||||
\end_layout
|
||||
|
||||
\begin_layout Subsubsection*
|
||||
Covariance Discretization
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
So far, all the covariances are assumed to be continuous since the state
|
||||
and measurement models are considered to be continuous-time stochastic
|
||||
processes.
|
||||
However, we sample measurements in a discrete-time fashion, necessitating
|
||||
the need to convert the covariances to their discrete time equivalents.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
The IMU is modeled as a first order Gauss-Markov process, with a measurement
|
||||
noise and a process noise.
|
||||
Following
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "Alg. 1 Page 57"
|
||||
key "Nikolic16thesis"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
and
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "Eqns 129-130"
|
||||
key "Trawny05report_IndirectKF"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
, the measurement noises
|
||||
\begin_inset Formula $[\epsilon^{a},\epsilon^{\omega},\epsilon_{init}]$
|
||||
\end_inset
|
||||
|
||||
are simply scaled by
|
||||
\begin_inset Formula $\frac{1}{\Delta t}$
|
||||
\end_inset
|
||||
|
||||
, and the process noises
|
||||
\begin_inset Formula $[\epsilon^{int},\epsilon^{b^{a}},\epsilon^{b^{\omega}}]$
|
||||
\end_inset
|
||||
|
||||
are scaled by
|
||||
\begin_inset Formula $\Delta t$
|
||||
\end_inset
|
||||
|
||||
where
|
||||
\begin_inset Formula $\Delta t$
|
||||
\end_inset
|
||||
|
||||
is the time interval between 2 consecutive samples.
|
||||
For a thorough explanation of the discretization process, please refer
|
||||
to
|
||||
\begin_inset CommandInset citation
|
||||
LatexCommand cite
|
||||
after "Section 8.1"
|
||||
key "Simon06book"
|
||||
literal "false"
|
||||
|
||||
\end_inset
|
||||
|
||||
.
|
||||
\end_layout
|
||||
|
||||
\begin_layout Standard
|
||||
\begin_inset CommandInset bibtex
|
||||
LatexCommand bibtex
|
||||
|
|
Binary file not shown.
20
doc/refs.bib
20
doc/refs.bib
|
@ -50,3 +50,23 @@
|
|||
title = {Calculus on manifolds},
|
||||
volume = {1},
|
||||
year = {1965}}
|
||||
|
||||
@phdthesis{Nikolic16thesis,
|
||||
title={Characterisation, calibration, and design of visual-inertial sensor systems for robot navigation},
|
||||
author={Nikolic, Janosch},
|
||||
year={2016},
|
||||
school={ETH Zurich}
|
||||
}
|
||||
|
||||
@book{Simon06book,
|
||||
title={Optimal state estimation: Kalman, H infinity, and nonlinear approaches},
|
||||
author={Simon, Dan},
|
||||
year={2006},
|
||||
publisher={John Wiley \& Sons}
|
||||
}
|
||||
|
||||
@inproceedings{Trawny05report_IndirectKF,
|
||||
title={Indirect Kalman Filter for 3 D Attitude Estimation},
|
||||
author={Nikolas Trawny and Stergios I. Roumeliotis},
|
||||
year={2005}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue