overload multifrontal elimination

release/4.3a0
Varun Agrawal 2022-11-09 18:38:42 -05:00
parent eb94ad90d2
commit 0938159706
2 changed files with 192 additions and 16 deletions

View File

@ -546,6 +546,24 @@ HybridGaussianFactorGraph::continuousDelta(
return delta_tree;
}
/* ************************************************************************ */
DecisionTree<Key, VectorValues::shared_ptr>
HybridGaussianFactorGraph::continuousDelta(
const DiscreteKeys &discrete_keys,
const boost::shared_ptr<BayesTreeType> &continuousBayesTree,
const std::vector<DiscreteValues> &assignments) const {
// Create a decision tree of all the different VectorValues
std::vector<VectorValues::shared_ptr> vector_values;
for (const DiscreteValues &assignment : assignments) {
VectorValues values = continuousBayesTree->optimize(assignment);
vector_values.push_back(boost::make_shared<VectorValues>(values));
}
DecisionTree<Key, VectorValues::shared_ptr> delta_tree(discrete_keys,
vector_values);
return delta_tree;
}
/* ************************************************************************ */
AlgebraicDecisionTree<Key> HybridGaussianFactorGraph::continuousProbPrimes(
const DiscreteKeys &orig_discrete_keys,
@ -584,6 +602,67 @@ AlgebraicDecisionTree<Key> HybridGaussianFactorGraph::continuousProbPrimes(
return probPrimeTree;
}
/* ************************************************************************ */
AlgebraicDecisionTree<Key> HybridGaussianFactorGraph::continuousProbPrimes(
const DiscreteKeys &orig_discrete_keys,
const boost::shared_ptr<BayesTreeType> &continuousBayesTree) const {
// Generate all possible assignments.
const std::vector<DiscreteValues> assignments =
DiscreteValues::CartesianProduct(orig_discrete_keys);
// Save a copy of the original discrete key ordering
DiscreteKeys discrete_keys(orig_discrete_keys);
// Reverse discrete keys order for correct tree construction
std::reverse(discrete_keys.begin(), discrete_keys.end());
// Create a decision tree of all the different VectorValues
DecisionTree<Key, VectorValues::shared_ptr> delta_tree =
this->continuousDelta(discrete_keys, continuousBayesTree, assignments);
// Get the probPrime tree with the correct leaf probabilities
std::vector<double> probPrimes;
for (const DiscreteValues &assignment : assignments) {
VectorValues delta = *delta_tree(assignment);
// If VectorValues is empty, it means this is a pruned branch.
// Set thr probPrime to 0.0.
if (delta.size() == 0) {
probPrimes.push_back(0.0);
continue;
}
// Compute the error given the delta and the assignment.
double error = this->error(delta, assignment);
probPrimes.push_back(exp(-error));
}
AlgebraicDecisionTree<Key> probPrimeTree(discrete_keys, probPrimes);
return probPrimeTree;
}
/* ************************************************************************ */
std::pair<Ordering, Ordering>
HybridGaussianFactorGraph::separateContinuousDiscreteOrdering(
const Ordering &ordering) const {
KeySet all_continuous_keys = this->continuousKeys();
KeySet all_discrete_keys = this->discreteKeys();
Ordering continuous_ordering, discrete_ordering;
for (auto &&key : ordering) {
if (std::find(all_continuous_keys.begin(), all_continuous_keys.end(),
key) != all_continuous_keys.end()) {
continuous_ordering.push_back(key);
} else if (std::find(all_discrete_keys.begin(), all_discrete_keys.end(),
key) != all_discrete_keys.end()) {
discrete_ordering.push_back(key);
} else {
throw std::runtime_error("Key in ordering not present in factors.");
}
}
return std::make_pair(continuous_ordering, discrete_ordering);
}
/* ************************************************************************ */
boost::shared_ptr<HybridGaussianFactorGraph::BayesNetType>
HybridGaussianFactorGraph::eliminateHybridSequential(
@ -640,25 +719,96 @@ boost::shared_ptr<HybridGaussianFactorGraph::BayesNetType>
HybridGaussianFactorGraph::eliminateSequential(
const Ordering &ordering, const Eliminate &function,
OptionalVariableIndex variableIndex) const {
KeySet all_continuous_keys = this->continuousKeys();
KeySet all_discrete_keys = this->discreteKeys();
Ordering continuous_ordering, discrete_ordering;
// Segregate the continuous and the discrete keys
for (auto &&key : ordering) {
if (std::find(all_continuous_keys.begin(), all_continuous_keys.end(),
key) != all_continuous_keys.end()) {
continuous_ordering.push_back(key);
} else if (std::find(all_discrete_keys.begin(), all_discrete_keys.end(),
key) != all_discrete_keys.end()) {
discrete_ordering.push_back(key);
} else {
throw std::runtime_error("Key in ordering not present in factors.");
}
Ordering continuous_ordering, discrete_ordering;
std::tie(continuous_ordering, discrete_ordering) =
this->separateContinuousDiscreteOrdering(ordering);
return this->eliminateHybridSequential(continuous_ordering, discrete_ordering,
function, variableIndex);
}
/* ************************************************************************ */
boost::shared_ptr<HybridGaussianFactorGraph::BayesTreeType>
HybridGaussianFactorGraph::eliminateHybridMultifrontal(
const boost::optional<Ordering> continuous,
const boost::optional<Ordering> discrete, const Eliminate &function,
OptionalVariableIndex variableIndex) const {
Ordering continuous_ordering =
continuous ? *continuous : Ordering(this->continuousKeys());
Ordering discrete_ordering =
discrete ? *discrete : Ordering(this->discreteKeys());
// Eliminate continuous
HybridBayesTree::shared_ptr bayesTree;
HybridGaussianFactorGraph::shared_ptr discreteGraph;
std::tie(bayesTree, discreteGraph) =
BaseEliminateable::eliminatePartialMultifrontal(continuous_ordering,
function, variableIndex);
// Get the last continuous conditional which will have all the discrete
Key last_continuous_key =
continuous_ordering.at(continuous_ordering.size() - 1);
auto last_conditional = (*bayesTree)[last_continuous_key]->conditional();
DiscreteKeys discrete_keys = last_conditional->discreteKeys();
// If not discrete variables, return the eliminated bayes net.
if (discrete_keys.size() == 0) {
return bayesTree;
}
return this->eliminateHybridSequential(continuous_ordering,
discrete_ordering);
AlgebraicDecisionTree<Key> probPrimeTree =
this->continuousProbPrimes(discrete_keys, bayesTree);
discreteGraph->add(DecisionTreeFactor(discrete_keys, probPrimeTree));
auto updatedBayesTree =
discreteGraph->BaseEliminateable::eliminateMultifrontal(discrete_ordering,
function);
auto discrete_clique = (*updatedBayesTree)[discrete_ordering.at(0)];
// Set the root of the bayes tree as the discrete clique
for (auto node : bayesTree->nodes()) {
auto clique = node.second;
if (clique->conditional()->parents() ==
discrete_clique->conditional()->frontals()) {
updatedBayesTree->addClique(clique, discrete_clique);
} else {
// Remove the clique from the children of the parents since it will get
// added again in addClique.
auto clique_it = std::find(clique->parent()->children.begin(),
clique->parent()->children.end(), clique);
clique->parent()->children.erase(clique_it);
updatedBayesTree->addClique(clique, clique->parent());
}
}
return updatedBayesTree;
}
/* ************************************************************************ */
boost::shared_ptr<HybridGaussianFactorGraph::BayesTreeType>
HybridGaussianFactorGraph::eliminateMultifrontal(
OptionalOrderingType orderingType, const Eliminate &function,
OptionalVariableIndex variableIndex) const {
return BaseEliminateable::eliminateMultifrontal(orderingType, function,
variableIndex);
}
/* ************************************************************************ */
boost::shared_ptr<HybridGaussianFactorGraph::BayesTreeType>
HybridGaussianFactorGraph::eliminateMultifrontal(
const Ordering &ordering, const Eliminate &function,
OptionalVariableIndex variableIndex) const {
// Segregate the continuous and the discrete keys
Ordering continuous_ordering, discrete_ordering;
std::tie(continuous_ordering, discrete_ordering) =
this->separateContinuousDiscreteOrdering(ordering);
return this->eliminateHybridMultifrontal(
continuous_ordering, discrete_ordering, function, variableIndex);
}
} // namespace gtsam

View File

@ -231,6 +231,10 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
const DiscreteKeys& discrete_keys,
const boost::shared_ptr<BayesNetType>& continuousBayesNet,
const std::vector<DiscreteValues>& assignments) const;
DecisionTree<Key, VectorValues::shared_ptr> continuousDelta(
const DiscreteKeys& discrete_keys,
const boost::shared_ptr<BayesTreeType>& continuousBayesTree,
const std::vector<DiscreteValues>& assignments) const;
/**
* @brief Compute the unnormalized probabilities of the continuous variables
@ -244,6 +248,12 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
AlgebraicDecisionTree<Key> continuousProbPrimes(
const DiscreteKeys& discrete_keys,
const boost::shared_ptr<BayesNetType>& continuousBayesNet) const;
AlgebraicDecisionTree<Key> continuousProbPrimes(
const DiscreteKeys& discrete_keys,
const boost::shared_ptr<BayesTreeType>& continuousBayesTree) const;
std::pair<Ordering, Ordering> separateContinuousDiscreteOrdering(
const Ordering& ordering) const;
/**
* @brief Custom elimination function which computes the correct
@ -269,6 +279,22 @@ class GTSAM_EXPORT HybridGaussianFactorGraph
const Eliminate& function = EliminationTraitsType::DefaultEliminate,
OptionalVariableIndex variableIndex = boost::none) const;
boost::shared_ptr<BayesTreeType> eliminateHybridMultifrontal(
const boost::optional<Ordering> continuous = boost::none,
const boost::optional<Ordering> discrete = boost::none,
const Eliminate& function = EliminationTraitsType::DefaultEliminate,
OptionalVariableIndex variableIndex = boost::none) const;
boost::shared_ptr<BayesTreeType> eliminateMultifrontal(
OptionalOrderingType orderingType = boost::none,
const Eliminate& function = EliminationTraitsType::DefaultEliminate,
OptionalVariableIndex variableIndex = boost::none) const;
boost::shared_ptr<BayesTreeType> eliminateMultifrontal(
const Ordering& ordering,
const Eliminate& function = EliminationTraitsType::DefaultEliminate,
OptionalVariableIndex variableIndex = boost::none) const;
/**
* @brief Return a Colamd constrained ordering where the discrete keys are
* eliminated after the continuous keys.